Patents by Inventor Christopher T. Cotton

Christopher T. Cotton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230417887
    Abstract: Airborne LiDAR bathymetry systems and methods of use are provided. The airborne LiDAR bathymetry system can collect topographic data and bathymetric data at high altitudes. The airborne LiDAR bathymetry system has a receiver system, a detector system, and a laser transmission system.
    Type: Application
    Filed: September 11, 2023
    Publication date: December 28, 2023
    Inventors: Nathan Lee Hopper, Joseph R. Seppi, Rodney Ross Faulkner, II, Mark Douglas Smits, II, Joong Yong Park, Mark Stephen Millman, Eric Josef Cahoon, Christopher T. Cotton, Joshua Gluckman, Alexander Cheff Halterman, Grady Tuell, Andrew Wallace Stark, John Henry Gerhard, William Jeffrey Lillycrop
  • Patent number: 11754693
    Abstract: Airborne LiDAR bathymetry systems and methods of use are provided. The airborne LiDAR bathymetry system can collect topographic data and bathymetric data at high altitudes. The airborne LiDAR bathymetry system has a receiver system, a detector system, and a laser transmission system.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: September 12, 2023
    Assignee: WOOLPERT, INC.
    Inventors: Nathan Lee Hopper, Joseph R. Seppi, Rodney Ross Faulkner, II, Mark Douglas Smits, II, Joong Yong Park, Mark Stephen Millman, Eric Josef Cahoon, Christopher T. Cotton, Joshua Gluckman, Alexander Cheff Halterman, Grady Tuell, Andrew Wallace Stark, John Henry Gerhard, William Jeffrey Lillycrop
  • Publication number: 20230087172
    Abstract: Systems and methods for providing a head-up display using a holographic element formed on a visor of a wearable element (e.g., a helmet) are disclosed. Light projectors along with corresponding optics are positioned on both sides of a user's head within the wearable element. Light from a light projector is directed towards the holographic element to reflect towards the eye on the opposite side of the head from the light projector. With light reflecting from both light projectors, images are perceived by the user is being positioned on a virtual screen where the virtual screen is positioned outside the wearable element. Images on the virtual screen are displayed stereoscopically and with a large field of view for the user.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 23, 2023
    Inventors: Benjamin Edward Lamm, Andrew Thomas Busey, Daniel David Haab, Davis Michael Saltzgiver, Christopher T. Cotton, Marc Allen Boudria
  • Publication number: 20220381888
    Abstract: A photonic integrated circuit is provided having a plurality of light paths each configured to branch light received from at least one light receiving input to a first light path section and a second light path section, to turn the polarization of at least a portion of the light received at the receiving input into light of a first linear polarization and light of a second linear polarization that is orthogonal to the first polarization; wherein the first light path section is configured to emit light of the first linear polarization to the outside; wherein the second light path section is configured to determine an interference signal using the light having the second linear polarization of the first light path and light having the second received from the outside.
    Type: Application
    Filed: March 7, 2022
    Publication date: December 1, 2022
    Inventors: George RAKULJIC, Naresh SATYAN, Ron FRIEDMAN, Israel PETRONIUS, Yaakov VILENCHIK, Christopher T. COTTON
  • Publication number: 20220206128
    Abstract: Airborne LiDAR bathymetry systems and methods of use are provided. The airborne LiDAR bathymetry system can collect topographic data and bathymetric data at high altitudes. The airborne LiDAR bathymetry system has a receiver system, a detector system, and a laser transmission system.
    Type: Application
    Filed: September 20, 2021
    Publication date: June 30, 2022
    Inventors: Nathan Lee Hopper, Joseph R. Seppi, Rodney Ross Faulkner, II, Mark Douglas Smits, II, Joong Yong Park, Mark Stephen Millman, Eric Josef Cahoon, Christopher T. Cotton, Joshua Gluckman, Alexander Cheff Halterman, Grady Tuell, Andrew Wallace Stark, John Henry Gerhard, William Jeffrey Lillycrop
  • Patent number: 11125865
    Abstract: Airborne LiDAR bathymetry systems and methods of use are provided. The airborne LiDAR bathymetry system can collect topographic data and bathymetric data at high altitudes. The airborne LiDAR bathymetry system has a receiver system, a detector system, and a laser transmission system.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: September 21, 2021
    Assignee: Woolpert, Inc.
    Inventors: Nathan Lee Hopper, Joseph R. Seppi, Rodney Ross Faulkner, II, Mark Douglas Smits, II, JoongYong Park, Mark Stephen Millman, Eric Josef Cahoon, Christopher T. Cotton, Joshua Gluckman, Alexander Cheff Halterman, Grady Tuell, Andrew Wallace Stark, John Henry Gerhard, William Jeffrey Lillycrop
  • Publication number: 20210055418
    Abstract: Airborne LiDAR bathymetry systems and methods of use are provided. The airborne LiDAR bathymetry system can collect topographic data and bathymetric data at high altitudes. The airborne LiDAR bathymetry system has a receiver system, a detector system, and a laser transmission system.
    Type: Application
    Filed: June 1, 2020
    Publication date: February 25, 2021
    Inventors: Nathan Lee Hopper, Joseph R. Seppi, Rodney Ross Faulkner, II, Mark Douglas Smits, II, JoongYong Park, Mark Stephen Millman, Eric Josef Cahoon, Christopher T. Cotton, Joshua Gluckman, Alexander Cheff Halterman, Grady Tuell, Andrew Wallace Stark, John Henry Gerhard, William Jeffrey Lillycrop
  • Patent number: 9258468
    Abstract: An optical device that creates separate images for different wavelength bands of light. The device comprises a light sensor, a first dichroic filter, and a first mirror. The light sensor comprises a first light sensing portion and a second light sensing portion. The first dichroic filter reflects a first portion of incident light of a first wavelength band from a source through an imaging lens with the imaging lens projecting a first image of the source onto the first light sensing portion of the light sensor; and the first dichroic filter transmits a second portion of incident light of a second wavelength band from the scene different from the first wavelength range. The first mirror is positioned to reflect the transmitted second portion of incident light through the imaging lens, the imaging lens projecting a second image of the source onto the second light sensing portion of the light sensor.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: February 9, 2016
    Assignee: FluxData, Inc.
    Inventors: Christopher T. Cotton, Lawrence Taplin, Pano Spiliotis
  • Patent number: 8836778
    Abstract: A portable hand-held camera for imaging the fundus of an eye, the camera comprising a housing comprising an internal cavity terminating at a forward housing end, a forward lens, and a light source configured to direct light from locations distributed around the perimeter of the forward lens forwardly out of the housing end. In other embodiment, a portable hand-held camera for imaging the fundus of an eye includes optics configured to focus light reflected back from the fundus onto an image receptor, with the optics being capable of varying the field of view among differing portions of the fundus. Methods to ensure unique image identification and storage are described.
    Type: Grant
    Filed: December 4, 2010
    Date of Patent: September 16, 2014
    Assignee: Lumetrics, Inc.
    Inventors: Filipp V. Ignatovich, David M. Kleinman, Christopher T. Cotton, Todd Blalock
  • Patent number: 8416496
    Abstract: An optical probe for splitting a beam of light into multiple beams. The optical probe may comprise a first polarizing beam splitter having a first polarization axis, a second polarizing beam splitter having a second polarization axis orthogonal to the first polarization axis, a first half wave plate and a second half wave plate, and optionally a first birefringent phase plate, and a second birefringent phase plate. The first half wave plate may be located before first polarizing beam splitter, and the second half wave plate may be located after the first polarizing beam splitter, relative to the propagation of the light beam. The optical probe may further include a lens for collimating the four light beams. A profilometer includes the optical probe for splitting a beam of light into four light beams, and a scanner for traversing the optical probe over a surface of an element to be measured.
    Type: Grant
    Filed: March 20, 2010
    Date of Patent: April 9, 2013
    Assignee: ASE Optics Inc.
    Inventors: Damon W. Diehl, Christopher T. Cotton
  • Publication number: 20120287255
    Abstract: A portable hand-held camera for imaging the fundus of an eye, the camera comprising a housing comprising an internal cavity terminating at a forward housing end, a forward lens, and a light source configured to direct light from locations distributed around the perimeter of the forward lens forwardly out of the housing end. In other embodiment, a portable hand-held camera for imaging the fundus of an eye includes optics configured to focus light reflected back from the fundus onto an image receptor, with the optics being capable of varying the field of view among differing portions of the fundus. Methods to ensure unique image identification and storage are described.
    Type: Application
    Filed: December 4, 2010
    Publication date: November 15, 2012
    Applicant: LUMETRICS, INC.
    Inventors: Filipp V. Ignatovich, David M. Kleinman, Christopher T. Cotton, Todd Blalock
  • Publication number: 20120044502
    Abstract: An optical probe for splitting a beam of light into multiple beams. The optical probe may comprise a first polarizing beam splitter having a first polarization axis, a second polarizing beam splitter having a second polarization axis orthogonal to the first polarization axis, a first half wave plate and a second half wave plate, and optionally a first birefringent phase plate, and a second birefringent phase plate. The first half wave plate may be located before first polarizing beam splitter, and the second half wave plate may be located after the first polarizing beam splitter, relative to the propagation of the light beam. The optical probe may further include a lens for collimating the four light beams. A profilometer includes the optical probe for splitting a beam of light into four light beams, and a scanner for traversing the optical probe over a surface of an element to be measured.
    Type: Application
    Filed: March 20, 2010
    Publication date: February 23, 2012
    Applicant: ASE OPTICS INC.
    Inventors: Damon W. Diehl, Christopher T. Cotton
  • Patent number: 7729052
    Abstract: An optical diffraction grating having a superior ultra-precise non-planar surface shape desired in extremely sensitive and complex optical imaging devices (e.g. spectrometers or hyperspectral imagers) is provided. The optical diffraction grating comprises a substrate having a plurality of substantially parallel grooves, wherein each of the grooves includes a plurality of substantially parallel sub-grooves. A non-planar substrate surface shape is defined by a combination of the grooves. A groove profile is defined by a combination of the sub-grooves within a corresponding one of the grooves. In a preferred method of manufacturing the optical diffraction grating, a rotating spindle technique would be employed.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: June 1, 2010
    Inventor: Christopher T. Cotton
  • Patent number: 7508590
    Abstract: An optical system for a digital light projection system is provided. The optical system comprises a plurality of LED arrays, wherein each LED array comprises a plurality of LEDs. The optical system also comprises an optical concentrator element positioned substantially adjacent to each of the LED arrays, wherein each concentrator element reflects light emitted from the plurality of LEDs within the corresponding LED array so as to provide substantially uniform light at an output surface of each concentrator element. The optical system preferably further comprises an optical combiner element, wherein the output surface of each concentrator element is optically aligned with a corresponding side of the combiner element, and wherein the combiner element chromatically combines the substantially uniform light provided at the output surface of each concentrator element so as to form color-combined light at an output surface of the combiner element.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: March 24, 2009
    Assignee: Scram Technologies, Inc.
    Inventors: James F. Shanley, Christopher T. Cotton
  • Patent number: 6719430
    Abstract: An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: April 13, 2004
    Assignee: Scram Technologies, Inc.
    Inventors: Christopher T. Cotton, James T. Veligdan
  • Patent number: 6715886
    Abstract: An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: April 6, 2004
    Assignee: Scram Technologies, Inc.
    Inventors: Christopher T. Cotton, James T. Veligdan
  • Patent number: 6707542
    Abstract: A refractometric apparatus and method for monitoring the percentage of water in hydraulic and non-hydraulic fluids employ a temperature sensitive device allowing a user to obtain accurate and correct readings of various measured properties. In particular, the temperature sensitive member comprises a prism-wedge-mirror combination in conjunction with a bimetallic strip. The combination ensures the proper angular displacement of a light beam inside the refractometric apparatus and, therefore, the correct reading of a parameter to be measured.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: March 16, 2004
    Assignee: Reichert, Inc.
    Inventors: Christopher T. Cotton, Jeffrey M. Sabin, Thomas E. Ryan
  • Patent number: 6704484
    Abstract: An optical system for projecting an image onto an input surface of a display to be observed by an observer at an output surface of the display is disclosed. The optical system comprises an image source, an imaging element, and a telescope. The optical system may also include a telecentric element and/or path-reduction prism. The display may comprise, for example, a plurality of stacked optical waveguides, each having a first end and a second end, wherein the input surface is defined by the plurality of first ends, and wherein the output surface is defined by the plurality of second ends. The optical system is preferably used when the tilt angle of the input surface is different than the tilt angle of the output surface. The optical system provides for a magnification to the input surface to be different than a magnification to the output surface.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: March 9, 2004
    Assignee: Scram Technologies, Inc.
    Inventor: Christopher T. Cotton
  • Publication number: 20030218725
    Abstract: An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
    Type: Application
    Filed: May 13, 2003
    Publication date: November 27, 2003
    Inventors: Christopher T. Cotton, James T. Veligdan
  • Publication number: 20030025885
    Abstract: An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
    Type: Application
    Filed: April 25, 2002
    Publication date: February 6, 2003
    Inventors: Christopher T. Cotton, James T. Veligdan