Patents by Inventor Christy S Tyberg

Christy S Tyberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150060856
    Abstract: This invention provides structures and a fabrication process for incorporating thin film transistors in back end of the line (BEOL) interconnect structures. The structures and fabrication processes described are compatible with processing requirements for the BEOL interconnect structures. The structures and fabrication processes utilize existing processing steps and materials already incorporated in interconnect wiring levels in order to reduce added cost associated with incorporating thin film transistors in the these levels. The structures enable vertical (3D) integration of multiple levels with improved manufacturability and reliability as compared to prior art methods of 3D integration.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Christy S. TYBERG, Katherine L. SAENGER, Jack O. CHU, Harold J. HOVEL, Robert L. WISNIEFF, Kerry BERNSTEIN, Stephen W. BEDELL
  • Patent number: 8569803
    Abstract: This invention provides structures and a fabrication process for incorporating thin film transistors in back end of the line (BEOL) interconnect structures. The structures and fabrication processes described are compatible with processing requirements for the BEOL interconnect structures. The structures and fabrication processes utilize existing processing steps and materials already incorporated in interconnect wiring levels in order to reduce added cost associated with incorporating thin film transistors in the these levels. The structures enable vertical (3D) integration of multiple levels with improved manufacturability and reliability as compared to prior art methods of 3D integration.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: October 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Christy S. Tyberg, Katherine L. Saenger, Jack O. Chu, Harold J. Hovel, Robert L. Wisnieff, Kerry Bernstein, Stephen W. Bedell
  • Patent number: 8445377
    Abstract: A mechanically robust semiconductor structure with improved adhesion strength between a low-k dielectric layer and a dielectric-containing substrate is provided. In particular, the present invention provides a structure that includes a dielectric-containing substrate having an upper region including a treated surface layer which is chemically and physically different from the substrate; and a low-k dielectric material located on a the treated surface layer of the substrate. The treated surface layer and the low-k dielectric material form an interface that has an adhesion strength that is greater than 60% of the cohesive strength of the weaker material on either side of the interface. The treated surface is formed by treating the surface of the substrate with at least one of actinic radiation, a plasma and e-beam radiation prior to forming of the substrate the low-k dielectric material.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Qinghuang Lin, Terry A. Spooner, Darshan D. Gandhi, Christy S. Tyberg
  • Patent number: 8441042
    Abstract: This invention provides structures and a fabrication process for incorporating thin film transistors in back end of the line (BEOL) interconnect structures. The structures and fabrication processes described are compatible with processing requirements for the BEOL interconnect structures. The structures and fabrication processes utilize existing processing steps and materials already incorporated in interconnect wiring levels in order to reduce added cost associated with incorporating thin film transistors in the these levels. The structures enable vertical (3D) integration of multiple levels with improved manufacturability and reliability as compared to prior art methods of 3D integration.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Christy S. Tyberg, Katherine L. Saenger, Jack O. Chu, Harold J. Hovel, Robert L. Wisnieff, Kerry Bernstein, Stephen W. Bedell
  • Publication number: 20120305929
    Abstract: This invention provides structures and a fabrication process for incorporating thin film transistors in back end of the line (BEOL) interconnect structures. The structures and fabrication processes described are compatible with processing requirements for the BEOL interconnect structures. The structures and fabrication processes utilize existing processing steps and materials already incorporated in interconnect wiring levels in order to reduce added cost associated with incorporating thin film transistors in the these levels. The structures enable vertical (3D) integration of multiple levels with improved manufacturability and reliability as compared to prior art methods of 3D integration.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christy S. Tyberg, Katherine L. Saenger, Jack O. Chu, Harold J. Hovel, Robert L. Wisnieff, Kerry Bernstein, Stephen W. Bedell
  • Patent number: 8278155
    Abstract: A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: October 2, 2012
    Assignee: International Business Machines Corporation
    Inventors: Geoffrey W. Burr, Chandrasekharan Kothandaraman, Chung Hon Lam, Xiao Hu Liu, Stephen M. Rossnagel, Christy S. Tyberg, Robert L. Wisnieff
  • Publication number: 20110318942
    Abstract: A mechanically robust semiconductor structure with improved adhesion strength between a low-k dielectric layer and a dielectric-containing substrate is provided. In particular, the present invention provides a structure that includes a dielectric-containing substrate having an upper region including a treated surface layer which is chemically and physically different from the substrate; and a low-k dielectric material located on a the treated surface layer of the substrate. The treated surface layer and the low-k dielectric material form an interface that has an adhesion strength that is greater than 60% of the cohesive strength of the weaker material on either side of the interface. The treated surface is formed by treating the surface of the substrate with at least one of actinic radiation, a plasma and e-beam radiation prior to forming of the substrate the low-k dielectric material.
    Type: Application
    Filed: September 9, 2011
    Publication date: December 29, 2011
    Applicant: International Business Machines Corporation
    Inventors: Qinghuang Lin, Terry A. Spooner, Darshan D. Gandhi, Christy S. Tyberg
  • Patent number: 8017522
    Abstract: A mechanically robust semiconductor structure with improved adhesion strength between a low-k dielectric layer and a dielectric-containing substrate is provided. In particular, the present invention provides a structure that includes a dielectric-containing substrate having an upper region including a treated surface layer which is chemically and physically different from the substrate; and a low-k dielectric material located on a the treated surface layer of the substrate. The treated surface layer and the low-k dielectric material form an interface that has an adhesion strength that is greater than 60% of the cohesive strength of the weaker material on either side of the interface. The treated surface is formed by treating the surface of the substrate with at least one of actinic radiation, a plasma and e-beam radiation prior to forming of the substrate the low-k dielectric material.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: September 13, 2011
    Assignee: International Business Machines Corporation
    Inventors: Qinghuang Lin, Terry A. Spooner, Darshan D. Gandhi, Christy S. Tyberg
  • Publication number: 20110207286
    Abstract: A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
    Type: Application
    Filed: May 4, 2011
    Publication date: August 25, 2011
    Inventors: Geoffrey W. Burr, Chandrasekharan Kothandaraman, Chung Hon Lam, Xiao Hu Liu, Stephen M. Rossnagel, Christy S. Tyberg, Robert L. Wisnieff
  • Patent number: 7960808
    Abstract: A reversible fuse structure in an integrated circuit is obtained through the implementation of a fuse cell having a short thin line of phase change materials in contact with via and line structures capable of passing current through the line of phase change material (fuse cell). The current is passed through the fuse cell in order to change the material from a less resistive material to a more resistive material through heating the phase change material in the crystalline state to the melting point then quickly quenching the material into the amorphous state. The reversible programming is achieved by passing a lower current through the fuse cell to convert the high resistivity amorphous material to a lower resistivity crystalline material. Appropriate sense-circuitry is integrated to read the information stored in the fuses, wherein said sense circuitry is used to enable or disable circuitry.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: June 14, 2011
    Assignee: International Business Machines Corporation
    Inventors: Geoffrey W. Burr, Chandrasekharan Kothandaraman, Chung Hon Lam, Xiao Hu Liu, Stephen M. Rossnagel, Christy S. Tyberg, Robert L. Wisnieff
  • Patent number: 7879717
    Abstract: Interconnect structures having buried etch stop layers with low dielectric constants and methods relating to the generation of such buried etch stop layers are described herein. The inventive interconnect structure comprises a buried etch stop layer comprised of a polymeric material having a composition SivNwCxOyHz, where 0.05?v?0.8, 0?w?0.9, 0.05?x?0.8, 0?y?0.3, 0.05?z?0.8 for v+w+x+y+z=1; a via level interlayer dielectric that is directly below said buried etch stop layer; a line level interlayer dielectric that is directly above said buried etch stop layer; and conducting metal features that traverse through said via level dielectric, said line level dielectric, and said buried etch stop layer.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Elbert E. Huang, Kaushik A. Kumar, Kelly Malone, Dirk Pfeiffer, Muthumanickam Sankarapandian, Christy S. Tyberg
  • Patent number: 7755921
    Abstract: In one embodiment, the invention is a method and apparatus for fabricating sub-lithography data tracks for use in magnetic shift register memory devices. One embodiment of a memory device includes a first stack of dielectric material formed of a first dielectric material, a second stack of dielectric material surrounding the first stack of dielectric material and formed of at least a second dielectric material, and at least one data track for storing information, positioned between the first stack of dielectric material and the second stack of dielectric material, the data track having a high aspect ratio and a substantially rectangular cross section.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: July 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Michael C. Gaidis, Eric A. Joseph, Stuart Stephen Papworth Parkin, Christy S. Tyberg
  • Patent number: 7737561
    Abstract: A dual damascene interconnect structure having a patterned multilayer of spun-on dielectrics on a substrate is provided. The structure includes: a patterned multilayer of spun-on dielectrics on a substrate, including: a cap layer; a first non-porous via level low-k dielectric layer having thereon metal via conductors with a bottom portion and sidewalls; an etch stop layer; a first porous line level low-k dielectric layer having thereon metal line conductors with a bottom portion and sidewalls; a polish stop layer over the first porous line level low-k dielectric; a second thin non-porous via level low-k dielectric layer for coating and planarizing the line and via sidewalls; and a liner material between the metal via and line conductors and the dielectric layers. Also provided is a method of forming the dual damascene interconnect structure.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: June 15, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kaushik A Kumar, Kelly Malone, Christy S Tyberg
  • Publication number: 20100006850
    Abstract: This invention provides structures and a fabrication process for incorporating thin film transistors in back end of the line (BEOL) interconnect structures. The structures and fabrication processes described are compatible with processing requirements for the BEOL interconnect structures. The structures and fabrication processes utilize existing processing steps and materials already incorporated in interconnect wiring levels in order to reduce added cost associated with incorporating thin film transistors in the these levels. The structures enable vertical (3D) integration of multiple levels with improved manufacturability and reliability as compared to prior art methods of 3D integration.
    Type: Application
    Filed: September 17, 2009
    Publication date: January 14, 2010
    Inventors: Christy S. Tyberg, Katherine L. Saenger, Jack O. Chu, Harold J. Hovel, Robert L. Wisnieff, Kerry Bernstein, Stephen W. Bedell
  • Publication number: 20090294925
    Abstract: A mechanically robust semiconductor structure with improved adhesion strength between a low-k dielectric layer and a dielectric-containing substrate is provided. In particular, the present invention provides a structure that includes a dielectric-containing substrate having an upper region including a treated surface layer which is chemically and physically different from the substrate; and a low-k dielectric material located on a the treated surface layer of the substrate. The treated surface layer and the low-k dielectric material form an interface that has an adhesion strength that is greater than 60% of the cohesive strength of the weaker material on either side of the interface. The treated surface is formed by treating the surface of the substrate with at least one of actinic radiation, a plasma and e-beam radiation prior to forming of the substrate the low-k dielectric material.
    Type: Application
    Filed: August 8, 2009
    Publication date: December 3, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qinghuang Lin, Terry A. Spooner, Darshan D. Gandhi, Christy S. Tyberg
  • Patent number: 7598169
    Abstract: A method to fabricate interconnect structures that are part of integrated circuits and microelectronic devices by utilization of an irradiation to remove and clean a sacrificial material used therein is described. The advantages of utilizing the irradiation to remove the sacrificial material include reduced damage to interlayer dielectric layers that result in enhanced device performance and/or increased reliability.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: October 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Qinghuang Lin, Elbert E. Huang, Christy S. Tyberg, Ronald A. DellaGuardia
  • Publication number: 20090046493
    Abstract: In one embodiment, the invention is a method and apparatus for fabricating sub-lithography data tracks for use in magnetic shift register memory devices. One embodiment of a memory device includes a first stack of dielectric material formed of a first dielectric material, a second stack of dielectric material surrounding the first stack of dielectric material and formed of at least a second dielectric material, and at least one data track for storing information, positioned between the first stack of dielectric material and the second stack of dielectric material, the data track having a high aspect ratio and a substantially rectangular cross section.
    Type: Application
    Filed: August 14, 2007
    Publication date: February 19, 2009
    Inventors: SOLOMON ASSEFA, Michael C. Gaidis, Eric A. Joseph, Stuart Stephen Papworth Parkin, Christy S. Tyberg
  • Patent number: 7491965
    Abstract: An electrically re-programmable fuse (eFUSE) device for use in integrated circuit devices includes an elongated heater element, an electrically insulating liner surrounding an outer surface of the elongated heater element, corresponding to a longitudinal axis thereof, leaving opposing ends of the elongated heater element in electrical contact with first and second heater electrodes. A phase change material (PCM) surrounds a portion of an outer surface of the electrically insulating liner, a thermally and electrically insulating layer surrounds an outer surface of the PCM, with first and second fuse electrodes in electrical contact with opposing ends of the PCM. The PCM is encapsulated within the electrically insulating liner, the thermally and electrically insulating layer, and the first and second fuse electrodes.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: James P. Doyle, Bruce G. Elmegreen, Lia Krusin-Elbaum, Chung Hon Lam, Xiao Hu Liu, Dennis M. Newns, Christy S. Tyberg
  • Publication number: 20080254612
    Abstract: Interconnect structures having buried etch stop layers with low dielectric constants and methods relating to the generation of such buried etch stop layers are described herein. The inventive interconnect structure comprises a buried etch stop layer comprised of a polymeric material having a composition SivNwCxOyHz, where 0.05?v?0.8, 0?w?0.9, 0.05?x?0.8, O?y?0.3, 0.05?z?0.8 for v+w+x+y+z=1; a via level interlayer dielectric that is directly below said buried etch stop layer; a line level interlayer dielectric that is directly above said buried etch stop layer; and conducting metal features that traverse through said via level dielectric, said line level dielectric, and said buried etch stop layer.
    Type: Application
    Filed: June 17, 2008
    Publication date: October 16, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Elbert E. Huang, Kaushik A. Kumar, Kelly Malone, Dirk Pfeiffer, Muthumanickam Sankarapandian, Christy S. Tyberg
  • Patent number: RE45781
    Abstract: A structure useful for electrical interconnection comprises a substrate; a plurality of porous dielectric layers disposed on the substrate; an etch stop layer disposed between a first of the dielectric layers and a second of the dielectric layers; and at least one thin, tough, non-porous dielectric layer disposed between at least one of the porous dielectric layers and the etch stop layer. A method for forming the structure comprising forming a multilayer stack of porous dielectric layers on the substrate, the stack including the plurality of porous dielectric layers, and forming a plurality of patterned metal conductors within the multilayer stack. Curing of the multilayer dielectric stack may be in a single cure step in a furnace. The application and hot plate baking of the individual layers of the multi layer dielectric stack may be accomplished in a single spin-coat tool, without being removed, to fully cure the stack until all dielectric layers have been deposited.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: October 27, 2015
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Jeffrey C. Hedrick, Kang-Wook Lee, Kelly Malone, Christy S. Tyberg