Patents by Inventor Chrysanthos Tzivanopoulos

Chrysanthos Tzivanopoulos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103087
    Abstract: A battery system having a battery pack with a positive pole, a negative pole, at least one battery cell, and a pack voltage divider, and at least one high-voltage coupling network electrically connectable to the battery pack, having a positive terminal, a negative terminal, and a link voltage divider. The pack voltage divider comprises a first measuring resistance (RM1) and a first measuring switch (SM1) connected to one another between the negative pole and a first reference point, and a second measuring resistance (RM2) and a second measuring switch (SM2) connected to one another between the positive pole and the first reference point. The link voltage divider comprises a third measuring resistance (RM3) connected between the negative terminal and a second reference point, and a fourth measuring resistance (RM4) connected between the positive terminal and the second reference point.
    Type: Application
    Filed: September 15, 2023
    Publication date: March 28, 2024
    Inventors: Boris Lander, Chrysanthos Tzivanopoulos, Peter Kohn, Thomas Barabas
  • Publication number: 20230236248
    Abstract: A diagnostic circuit (60) for diagnosing a battery disconnect unit (100) for disconnecting a battery system (200) from an electrical system (300). The battery disconnect unit (100) includes a first switching element (S1) and a second switching element (S2). A first connection of the first switching element (S1) is connected to a first node point (8), and a second connection of the first switching element (S1) is connected to the first terminal (2). A first connection of the second switching element (S2) is connected to the first node point (8), and a second connection of the second switching element (S2) is connected to the second terminal (4). The diagnostic circuit (60) includes a first voltage divider (61) and a second voltage divider (62).
    Type: Application
    Filed: January 25, 2023
    Publication date: July 27, 2023
    Inventors: Johannes Swoboda, Chrysanthos Tzivanopoulos, Thomas Barabas
  • Publication number: 20230238808
    Abstract: A battery disconnect unit (100) for disconnecting a battery system (200) comprising at least one battery cell (5), from an electrical system (300). The battery disconnect unit (100) comprises a first terminal (2), a second terminal (4), a first switching element (S1), a second switching element (S2) and a current sensing resistor (6). A first connection of the first switching element (S1) is connected to a first connection of the current sensing resistor (6), and a second connection of the first switching element (S1) is connected to the first terminal (2). A first connection of the second switching element (S2) is connected to a second connection of the current sensing resistor (6), and a second connection of the second switching element (S2) is connected to the second terminal (4).
    Type: Application
    Filed: January 25, 2023
    Publication date: July 27, 2023
    Inventors: Johannes Swoboda, Chrysanthos Tzivanopoulos, Thomas Barabas
  • Publication number: 20230073493
    Abstract: The invention relates to a battery system (10) for an electric vehicle, comprising a battery pack (5) having a positive pole (22), a negative pole (21), at least one battery cell (2) and a pack voltage divider (25), and comprising at least one coupling network having a negative terminal (11) and a positive terminal (12), wherein the pack voltage divider (25) comprises a positive pack resistor (RP2) and a positive sub-pack-resistor (RSP2) which are connected to one another in series between the positive pole (22) and a reference point (50), and a negative pack resistor (RP1) and a negative sub-pack-resistor (RSP1) which are connected to one another in series between the negative pole (21) and the reference point (50).
    Type: Application
    Filed: October 2, 2020
    Publication date: March 9, 2023
    Inventors: Chrysanthos Tzivanopoulos, Johannes Swoboda, Thomas Schaedlich
  • Patent number: 11488795
    Abstract: A switching element (100) that comprises a switching unit (30), a first and a second coil unit (10, 20) for closing and opening the switching unit (30), wherein the first coil unit (10) comprises a first coil (12) and wherein the second coil unit (20) comprises a second coil (22). According to the invention, the first coil unit (10) comprises a first controllable delay circuit (14) that is connected in series with the first coil (12). The invention further relates to a switching device (200) that comprises a switching element (100) according to the invention. The invention further relates to a first and a second method for the operation of the switching device (200) according to the invention.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: November 1, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Chrysanthos Tzivanopoulos, Keonyeol Hwang
  • Patent number: 11422157
    Abstract: The invention relates to a shunt resistor (2) for detecting the status of an electrical energy storage unit (1), wherein the shunt resistor (2) comprises a first layer (4), a second layer (6) and a third layer (8). According to the invention, the layers (4, 6, 8) are arranged in a layered manner in a stacking direction (V), wherein the second layer (6) is arranged between the first layer (4) and the third layer (8), and wherein the layers (4, 6, 8) are in physical contact with one another at one of the sides having the greatest respective surface area, and wherein the layers (4, 6, 8) are arranged at least partially overlapping.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: August 23, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Chrysanthos Tzivanopoulos, Sven Bergmann
  • Publication number: 20220158314
    Abstract: A battery system having a battery pack with a negative pole, a positive pole and a battery cell, a coupling network having a first negative terminal and a first positive terminal, a pack voltage divider, and a coupling voltage divider. The first positive terminal is connectable to the positive pole via a switch. Optionally, the first negative terminal is connectable to the negative pole via a switch. The pack voltage divider includes a two resistors connected between the positive pole and a first reference point. A negative pack measurement resistor and a negative sub-pack measurement resistor are dis-connectable from the negative pole or the first reference point via a switch. A positive coupling measurement resistor and a positive sub-coupling measurement resistor are connected between the first positive terminal and the first reference point. Two resistors are connected between the first negative terminal and the first reference point.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 19, 2022
    Inventors: Berengar Krieg, Chrysanthos Tzivanopoulos, Johannes Swoboda, Thomas Schaedlich
  • Patent number: 11125786
    Abstract: A method for detecting an internal short circuit in a first electrical energy storage unit of an electrical energy storage device is described, wherein the electrical energy storage device comprises at least two electrical energy storage units including a first electrical energy storage unit and a second electrical energy storage unit electrically connected in parallel in the electrical energy storage device, the method including recording an electric current flowing into or out of the first electrical energy storage unit, recording an electric current flowing into or out of the second electrical energy storage unit, determining a short-circuit current in the first electrical energy storage unit based on the at least two recorded electric currents, and detecting an internal short circuit when the magnitude of the short-circuit current exceeding a predefined short-circuit current threshold.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: September 21, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Sven Bergmann, Chrysanthos Tzivanopoulos, Johannes Swoboda
  • Patent number: 11088399
    Abstract: The invention relates to a current sensor comprising an electric conductor (10), through which a first current (I) can flow parallel to a first direction (R1) and which comprises three regions (21, 22, 23) immediately following on from each other in the first direction (R1). A middle region (22) of the three regions (21, 22, 23) comprises a conductor cross-sectional area that is smaller than a conductor cross-sectional area of each of the two outer regions (21, 23) of the three regions (21, 22, 23). A voltage sensor of the current sensor is designed to measure a first voltage between the two terminals (41, 42) thereof. The first voltage is the same as a voltage applied to a measuring region (22, 25) at least partially coinciding with the middle region (22).
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: August 10, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Ruehle, Chrysanthos Tzivanopoulos, Eduard Reimer, Karsten Thoelmann, Kuen Cheuk Leung, Lisa Lorenz, Patrick Kaupp, Sven Bergmann
  • Publication number: 20210156888
    Abstract: The invention relates to a shunt resistor (2) for detecting the status of an electrical energy storage unit (1), wherein the shunt resistor (2) comprises a first layer (4), a second layer (6) and a third layer (8). According to the invention, the layers (4, 6, 8) are arranged in a layered manner in a stacking direction (V), wherein the second layer (6) is arranged between the first layer (4) and the third layer (8), and wherein the layers (4, 6, 8) are in physical contact with one another at one of the sides having the greatest respective surface area, and wherein the layers (4, 6, 8) are arranged at least partially overlapping.
    Type: Application
    Filed: May 3, 2018
    Publication date: May 27, 2021
    Inventors: Chrysanthos Tzivanopoulos, Sven Bergmann
  • Patent number: 10981451
    Abstract: Electrical energy storage system (1), comprising at least two strings (STR1, STR2, STR3) interconnected in parallel connection, wherein the strings each have at least two electrical energy storage units (15) interconnected in series connection, characterized in that at least one first electrically conductive cross-connection (11) between electrical energy storage units (15) at an identical first electrical potential in the strings (STR1, STR2, STR3) interconnected in parallel connection is electrically conductively connected via at least one diode (12) to a means for detecting an electric current (13) and a controllable electrical energy source (14), wherein the diode (12) is not incorporated into the first electrically conductive cross-connection (11).
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: April 20, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Chrysanthos Tzivanopoulos, Sven Bergmann
  • Publication number: 20210005411
    Abstract: A switching element (100) that comprises a switching unit (30), a first and a second coil unit (10, 20) for closing and opening the switching unit (30), wherein the first coil unit (10) comprises a first coil (12) and wherein the second coil unit (20) comprises a second coil (22). According to the invention, the first coil unit (10) comprises a first controllable delay circuit (14) that is connected in series with the first coil (12). The invention further relates to a switching device (200) that comprises a switching element (100) according to the invention. The invention further relates to a first and a second method for the operation of the switching device (200) according to the invention.
    Type: Application
    Filed: July 6, 2020
    Publication date: January 7, 2021
    Inventors: Chrysanthos Tzivanopoulos, Keonyeol Hwang
  • Publication number: 20200303784
    Abstract: The invention relates to a current sensor comprising an electric conductor (10), through which a first current (I) can flow parallel to a first direction (R1) and which comprises three regions (21, 22, 23) immediately following on from each other in the first direction (R1). A middle region (22) of the three regions (21, 22, 23) comprises a conductor cross-sectional area that is smaller than a conductor cross-sectional area of each of the two outer regions (21, 23) of the three regions (21, 22, 23). A voltage sensor of the current sensor is designed to measure a first voltage between the two terminals (41, 42) thereof. The first voltage is the same as a voltage applied to a measuring region (22, 25) at least partialy coinciding with the middle region (22).
    Type: Application
    Filed: November 18, 2016
    Publication date: September 24, 2020
    Inventors: Andreas Ruehle, Chrysanthos Tzivanopoulos, Eduard Reimer, Karsten Thoelmann, Kuen Cheuk Leung, Lisa Lorenz, Patrick Kaupp, Sven Bergmann
  • Patent number: 10700676
    Abstract: The present invention relates to a circuit arrangement for switching a high-voltage MOSFET (7) for precharging an intermediate circuit capacitance of a high-voltage on-board network with a first circuit assembly (11), by means of which the switching times of a high-voltage MOSFET used for charging the intermediate circuit capacitance can be reduced.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: June 30, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Chrysanthos Tzivanopoulos, Thomas Kaiser
  • Publication number: 20200052685
    Abstract: The present invention relates to a circuit arrangement for switching a high-voltage MOSFET (7) for precharging an intermediate circuit capacitance of a high-voltage on-board network with a first circuit assembly (11), by means of which the switching times of a high-voltage MOSFET used for charging the intermediate circuit capacitance can be reduced.
    Type: Application
    Filed: October 9, 2017
    Publication date: February 13, 2020
    Inventors: Chrysanthos Tzivanopoulos, Thomas Kaiser
  • Publication number: 20200033392
    Abstract: Electrical energy storage system (1), comprising at least two strings (STR1, STR2, STR3) interconnected in parallel connection, wherein the strings each have at least two electrical energy storage units (15) interconnected in series connection, characterized in that at least one first electrically conductive cross-connection (11) between electrical energy storage units (15) at an identical first electrical potential in the strings (STR1, STR2, STR3) interconnected in parallel connection is electrically conductively connected via at least one diode (12) to a means for detecting an electric current (13) and a controllable electrical energy source (14), wherein the diode (12) is not incorporated into the first electrically conductive cross-connection (11).
    Type: Application
    Filed: September 26, 2017
    Publication date: January 30, 2020
    Inventors: Chrysanthos Tzivanopoulos, Sven Bergmann
  • Publication number: 20190214689
    Abstract: A method for detecting an internal short circuit in a first electrical energy storage unit of an electrical energy storage device is described, wherein the electrical energy storage device comprises at least two electrical energy storage units including a first electrical energy storage unit and a second electrical energy storage unit electrically connected in parallel in the electrical energy storage device, the method including recording an electric current flowing into or out of the first electrical energy storage unit, recording an electric current flowing into or out of the second electrical energy storage unit, determining a short-circuit current in the first electrical energy storage unit based on the at least two recorded electric currents, and detecting an internal short circuit when the magnitude of the short-circuit current exceeding a predefined short-circuit current threshold.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 11, 2019
    Inventors: Sven Bergmann, Chrysanthos Tzivanopoulos, Johannes Swoboda
  • Patent number: 10277040
    Abstract: A communications system for a battery-management system of a battery includes coupling networks that are each connected or connectable via two input-side connections to a transmission channel, and via two output-side connections to a respective one of a plurality of communications users. The transmission channel can be used for the transmission of communications signals at a transmission frequency and that are to be transmitted and/or received by the communications users during a communications process between the communications users. At least one of the coupling networks has a first and second operating state, in which an input impedance that occurs between the two input-side connections of the respective predefined coupling network at the transmission frequency has two different impedance amounts. A communications user allocated to a predefined coupling network can set the allocated predefined coupling network to each of its two operating states once or multiple times during the communications process.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 30, 2019
    Assignee: ROBERT BOSCH GMBH
    Inventors: Clemens Schroff, Chrysanthos Tzivanopoulos, Juergen Seidel
  • Publication number: 20180278062
    Abstract: A communications system for a battery-management system of a battery includes coupling networks that are each connected or connectable via two input-side connections to a transmission channel, and via two output-side connections to a respective one of a plurality of communications users. The transmission channel can be used for the transmission of communications signals at a transmission frequency and that are to be transmitted and/or received by the communications users during a communications process between the communications users. At least one of the coupling networks has a first and second operating state, in which an input impedance that occurs between the two input-side connections of the respective predefined coupling network at the transmission frequency has two different impedance amounts. A communications user allocated to a predefined coupling network can set the allocated predefined coupling network to each of its two operating states once or multiple times during the communications process.
    Type: Application
    Filed: September 30, 2016
    Publication date: September 27, 2018
    Inventors: Clemens Schroff, Chrysanthos Tzivanopoulos, Juergen Seidel
  • Patent number: 10079408
    Abstract: The invention relates to a method for measuring an electric current of a battery (10) with multiple battery modules (11), having the step of measuring a temperature related to the battery module (11). According to the method, the temperature of a connector is first determined for at least one battery module (11) using the measured temperature and a temperature model, and the electric resistance of the connector is determined using a resistance model and the temperature of the connector. The electric voltage which drops at the connector is then measured, and the electric current flowing through the connector is calculated from the voltage. The invention additionally relates to a corresponding device and to a battery comprising such a device.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: September 18, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Chrysanthos Tzivanopoulos, Joerg Schneider, Lisa Lorenz, Sven Bergmann