Patents by Inventor Chun-Sheng Liang

Chun-Sheng Liang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240162336
    Abstract: Semiconductor structures and methods for manufacturing the same are provided. The semiconductor structure includes a first stack structure extends above the isolation structure, and the first stack structure includes a plurality of first nanostructures along a first direction. The semiconductor structure also includes a second stack structure formed adjacent to the first stack structure, and the second stack structure includes a plurality of second nanostructures along the first direction. A first dielectric wall between the first stack structure and the second stack structure, and the first dielectric wall is directly over a first portion of the isolation structure and surrounded by a second portion of the isolation structure, and a top surface of the first portion of the isolation structure is lower than a top surface of the second portion of the isolation structure.
    Type: Application
    Filed: March 8, 2023
    Publication date: May 16, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Heng TSAI, Chun-Sheng LIANG
  • Publication number: 20240147685
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a first source/drain (S/D) epitaxial feature disposed over a substrate, a second S/D epitaxial feature adjacent the first S/D epitaxial feature, and a hybrid fin disposed between the first and second S/D epitaxial features. The hybrid fin includes a first dielectric material, a second dielectric material disposed on the first dielectric material, a dielectric layer surrounding the first and second dielectric materials, and a high-k dielectric layer disposed in the first and second dielectric materials. The high-k dielectric layer has an upper surface located at a level between a level of an upper surface of the second dielectric material and a level of a lower surface of the second dielectric material.
    Type: Application
    Filed: January 19, 2023
    Publication date: May 2, 2024
    Inventors: Wen-Li Chiu, Chun-Sheng Liang
  • Publication number: 20240145555
    Abstract: Semiconductor structures and processes are provided. A semiconductor structure of the present disclosure includes a first base portion and a second base portion extending lengthwise along a first direction, a first source/drain feature disposed over the first base portion, a second source/drain feature disposed over the second base portion, a center dielectric fin sandwiched between the first source/drain feature and the second source/drain feature along a second direction perpendicular to the first direction, and a source/drain contact disposed over the first source/drain feature, the second source/drain feature and the center dielectric fin. A portion of the source/drain contact extends between the first source/drain feature and the second source/drain feature along the second direction.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 2, 2024
    Inventors: Ming-Heng Tsai, Chih-Hao Chang, Chun-Sheng Liang, Ta-Chun Lin
  • Publication number: 20240128267
    Abstract: A semiconductor device includes a first semiconductor structure, a second semiconductor structure, a first isolation block and a second isolation block. The first semiconductor structure includes a first gate structure wrapping around a first sheet structures and a second sheet structures, and a first dielectric wall disposed between and separating the first and second sheet structures. The second semiconductor structure includes a second gate structure wrapping around third sheet structures. The first isolation block is disposed on the first dielectric wall of the first semiconductor structure and separates the first gate structure into a first gate portion wrapping around the first sheet structures and a second gate portion wrapping around the second sheet structures. The second isolation block is disposed between the first and second semiconductor structures and separates the first gate structure from the second gate structure.
    Type: Application
    Filed: January 30, 2023
    Publication date: April 18, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Sheng Liang, Yu-San Chien, Pin Chun Shen, Wen-Chiang Hong, Chun-Wing Yeung
  • Publication number: 20240105805
    Abstract: Semiconductor structures and methods for manufacturing the same are provided. The semiconductor structure includes channel structures vertically stacked over a substrate and a source/drain structure laterally attached to the channel structures in the first direction. The semiconductor structure also includes a dielectric wall structure laterally attached to the channel structures in the second direction. The second direction is different from the first direction. In addition, the dielectric wall structure includes a bottom portion and a cap layer formed over the bottom portion. The semiconductor structure also includes an isolation feature vertically overlapping the cap layer of the dielectric wall structure and a gate structure formed around the channel structures and covering a sidewall of the isolation feature.
    Type: Application
    Filed: February 2, 2023
    Publication date: March 28, 2024
    Inventors: Chun-Sheng LIANG, Hong-Chih CHEN, Ta-Chun LIN, Shih-Hsun CHANG, Chih-Hao CHANG
  • Publication number: 20240105786
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a first source/drain (S/D) region disposed over a substrate, a second S/D region disposed over the substrate, a dielectric wall disposed between the first and second S/D regions, a first conductive contact disposed over and electrically connected to the first S/D region, a second conductive contact disposed over and electrically connected to the second S/D region, and a first dielectric material in contact with the dielectric wall. The first dielectric material has a top surface located at a first level between a top surface of the first conductive contact and a bottom surface of the first conductive contact, and the first dielectric material extends from the first level to a second level located below the bottom surface of the first conductive contact.
    Type: Application
    Filed: January 15, 2023
    Publication date: March 28, 2024
    Inventors: Chun-Sheng LIANG, Hong-Chih CHEN
  • Patent number: 11923455
    Abstract: A semiconductor device and method of forming the same are disclosed. The semiconductor device includes a fin structure, a gate electrode, a source-drain region, a plug and a hard mask structure. The gate electrode crosses over the fin structure. The source-drain region in the fin structure is aside the gate electrode. The plug is disposed over and electrically connected to the gate electrode. The hard mask structure surrounds the plug and is disposed over the gate electrode, wherein the hard mask structure includes a first hard mask layer and a second hard mask layer, the second hard mask layer covers a sidewall and a top surface of the first hard mask layer, and a material of the first hard mask layer is different from a material of the second hard mask layer.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Sheng Liang, Kuo-Hua Pan, Hsin-Che Chiang, Ming-Heng Tsai
  • Patent number: 11923194
    Abstract: A semiconductor device includes a semiconductor substrate having a first lattice constant, a dopant blocking layer disposed over the semiconductor substrate, the dopant blocking layer having a second lattice constant different from the first lattice constant, and a buffer layer disposed over the dopant blocking layer, the buffer layer having a third lattice constant different from the second lattice constant. The semiconductor device also includes a plurality of channel members suspended over the buffer layer, an epitaxial feature abutting the channel members, and a gate structure wrapping each of the channel members.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Hsin-Che Chiang, Wei-Chih Kao, Chun-Sheng Liang, Kuo-Hua Pan
  • Publication number: 20240063293
    Abstract: Embodiments provide a method for forming a semiconductor device structure, includes forming a fin structure having first semiconductor layers and second semiconductor layers alternatingly stacked thereover, forming a sacrificial gate structure over a portion of the fin structure, removing portions of the sacrificial gate structure to expose the first and second semiconductor layers, removing portions of the second semiconductor layers to expose portions of each of the first semiconductor layers. The method includes surrounding the exposed portions of each of the first semiconductor layers with a cladding layer, wherein the cladding layer is formed of a material chemically different from the first semiconductor layers, and the cladding layer has a first atomic percentage of germanium.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Inventors: Ta-Chun LIN, Yu-San CHIEN, Chun-Sheng LIANG, Kuo-Hua PAN, Jhon Jhy LIAW
  • Publication number: 20230420505
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes first and second gate structures formed over a semiconductor substrate and a multilayer gate isolation structure separating the first gate structure from the second gate structure. The multilayer gate isolation structure includes a first insulating feature adjacent to upper portions of the first gate structure and the second gate structure, and a second insulating feature separating the semiconductor substrate from the first insulating feature. The material of the second insulating feature is different than that of the first insulating feature. The second insulating feature has a lower dielectric constant or lower etch resistance than the first insulating feature.
    Type: Application
    Filed: June 22, 2022
    Publication date: December 28, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hong-Chih CHEN, Wei-Chih KAO, Chun-Yi CHANG, Yu-San CHIEN, Hsin-Che CHIANG, Chun-Sheng LIANG
  • Publication number: 20230411492
    Abstract: A semiconductor device structure and a formation method are provided. The method includes forming a dummy gate stack over a substrate and forming a dielectric layer laterally surrounding the dummy gate stack. The method also includes introducing dopants into an upper portion of the dielectric layer and removing the dummy gate stack to form a trench surrounded by the dielectric layer. The method further includes forming a metal gate stack in the trench.
    Type: Application
    Filed: June 15, 2022
    Publication date: December 21, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Yi CHANG, Wen-Li CHIU, Hsin-Che CHIANG, Chun-Sheng LIANG
  • Publication number: 20230411497
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first gate stack over a substrate. The first gate stack includes a first gate electrode and a dielectric layer between the first gate electrode and the substrate, and the first gate electrode has a void. The method includes oxidizing a side portion of the first gate electrode to form an oxide layer over the first gate electrode. The oxide layer fills the void.
    Type: Application
    Filed: June 17, 2022
    Publication date: December 21, 2023
    Inventors: Chun-Yi CHANG, Hsiao-Chu CHEN, Hong-Chih CHEN, Hsin-Che CHIANG, Chun-Sheng LIANG, Kuo-Hua PAN
  • Patent number: 11848373
    Abstract: A dummy fin described herein includes a low dielectric constant (low-k or LK) material outer shell. A leakage path that would otherwise occur due to a void being formed in the low-k material outer shell is filled with a high dielectric constant (high-k or HK) material inner core. This increases the effectiveness of the dummy fin to provide electrical isolation and increases device performance of a semiconductor device in which the dummy fin is included. Moreover, the dummy fin described herein may not suffer from bending issues experienced in other types of dummy fins, which may otherwise cause high-k induced alternating current (AC) performance degradation. The processes for forming the dummy fins described herein are compatible with other fin field effect transistor (finFET) formation processes and are be easily integrated to minimize and/or prevent polishing issues, etch back issues, and/or other types of semiconductor processing issues.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: December 19, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Chih Kao, Hsin-Che Chiang, Chun-Sheng Liang, Kuo-Hua Pan
  • Patent number: 11837602
    Abstract: An embodiment method includes forming a semiconductor liner layer on a first fin structure and on a second fin structure and forming a first capping layer on the semiconductor liner layer disposed on the first fin structure. The method further includes forming a second capping layer on the semiconductor liner layer disposed on the first fin structure, where a composition of the first capping layer is different from a composition of the second capping layer. The method additionally includes performing a thermal process on the first capping layer, the second capping layer, and the semiconductor liner layer to form a first channel region in the first fin structure and a second channel region in the second fin structure. A concentration profile of a material of the first channel region is different from a concentration profile of a material of the second channel region.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: December 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-San Chien, Hsin-Che Chiang, Chun-Sheng Liang, Kuo-Hua Pan
  • Publication number: 20230387274
    Abstract: A dummy fin described herein includes a low dielectric constant (low-k or LK) material outer shell. A leakage path that would otherwise occur due to a void being formed in the low-k material outer shell is filled with a high dielectric constant (high-k or HK) material inner core. This increases the effectiveness of the dummy fin to provide electrical isolation and increases device performance of a semiconductor device in which the dummy fin is included. Moreover, the dummy fin described herein may not suffer from bending issues experienced in other types of dummy fins, which may otherwise cause high-k induced alternating current (AC) performance degradation. The processes for forming the dummy fins described herein are compatible with other fin field effect transistor (finFET) formation processes and are be easily integrated to minimize and/or prevent polishing issues, etch back issues, and/or other types of semiconductor processing issues.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Wei-Chih KAO, Hsin-Che CHIANG, Chun-Sheng LIANG, Kuo-Hua PAN
  • Publication number: 20230378360
    Abstract: The present disclosure describes structure and method of a fin field-effect transistor (finFET) device. The finFET device includes: a substrate, a fin over the substrate, and a gate structure over the fin. The gate structure includes a work-function metal (WFM) layer over an inner sidewall of the gate structure. A topmost surface of the WFM layer is lower than a top surface of the gate structure. The gate structure also includes a filler gate metal layer over the topmost surface of the WFM layer. A top surface of the filler gate metal layer is substantially co-planar with the top surface of the gate structure. The gate structure further includes a self-assembled monolayer (SAM) between the filler gate metal layer and the WFM layer.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ju-Li Huang, Hsin-Che Chiang, Yu-Chi Pan, Chun-Ming Yang, Chun-Sheng Liang, Ying-Liang Chuang, Ming-Hsi Yeh
  • Publication number: 20230369465
    Abstract: An embodiment method includes: forming a semiconductor liner layer on exposed surfaces of a fin structure that extends above a dielectric isolation structure disposed over a substrate; forming a first capping layer to laterally surround a bottom portion of the semiconductor liner layer; forming a second capping layer over an upper portion of the semiconductor liner layer; and annealing the fin structure having the semiconductor liner layer, the first capping layer, and the second capping layer thereon, the annealing driving a dopant from the semiconductor liner layer into the fin structure, wherein a dopant concentration profile in a bottom portion of the fin structure is different from a dopant concentration profile in an upper portion of the fin structure.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 16, 2023
    Inventors: Wei-Chih Kao, Hsin-Che Chiang, Yu-San Chien, Chun-Sheng Liang, Kuo-Hua Pan
  • Publication number: 20230369135
    Abstract: A method includes forming first and second gate stacks extending across a semiconductor fin on a substrate; forming source/drain regions in the semiconductor fin, wherein one of the source/drain region is between the first and second gate stacks; forming a dielectric layer laterally surrounding the first and second gate stacks; doping a portion of the dielectric layer between the first and second gate stacks with a dopant; removing the second gate stack to form a gate trench next to the doped first portion of the dielectric layer; performing an annealing process to expand the doped first portion of the dielectric layer toward the gate trench; forming an isolation structure in the gate trench and next to the expanded first portion of the dielectric layer; forming a source/drain contact extending through the dielectric layer to the one of the source/drain regions.
    Type: Application
    Filed: May 11, 2022
    Publication date: November 16, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Wei WU, Hsin-Che CHIANG, Chun-Sheng LIANG
  • Publication number: 20230369336
    Abstract: Provided is a semiconductor device including a substrate, one hybrid fin, a gate, and a dielectric structure. The substrate includes at least two fins. The hybrid fin is disposed between the at least two fins. The gate covers portions of the at least two fins and the hybrid fin. The dielectric structure lands on the hybrid fin to divide the gate into two segment. The two segments are electrically isolated to each other by the dielectric structure and the hybrid fin. The hybrid fin includes a first portion, disposed between the two segments of the gate; and a second portion, disposed aside the first portion, wherein a top surface of the second portion is lower than a top surface of the first portion.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-San Chien, Chun-Sheng Liang, Jhon-Jhy Liaw, Kuo-Hua Pan, Hsin-Che Chiang
  • Patent number: 11810978
    Abstract: The present disclosure describes structure and method of a fin field-effect transistor (finFET) device. The finFET device includes: a substrate, a fin over the substrate, and a gate structure over the fin. The gate structure includes a work-function metal (WFM) layer over an inner sidewall of the gate structure. A topmost surface of the WFM layer is lower than a top surface of the gate structure. The gate structure also includes a filler gate metal layer over the topmost surface of the WFM layer. A top surface of the filler gate metal layer is substantially co-planar with the top surface of the gate structure. The gate structure further includes a self-assembled monolayer (SAM) between the filler gate metal layer and the WFM layer.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: November 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ju-Li Huang, Hsin-Che Chiang, Yu-Chi Pan, Chun-Ming Yang, Chun-Sheng Liang, Ying-Liang Chuang, Ming-Hsi Yeh