Patents by Inventor Chun-Wen Nieh

Chun-Wen Nieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11309213
    Abstract: A method for manufacturing a semiconductor structure includes following operations. A sacrificial layer is formed over the conductive layer, wherein the sacrificial layer includes a first sacrificial portion over the first conductive portion, and a second sacrificial portion over the second conductive portion, and a first thickness of the first sacrificial portion is larger than a second thickness of the second sacrificial portion. The first sacrificial portion and the second sacrificial portion of the sacrificial layer, and the second conductive portion of the conductive layer are removed.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: April 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Hsiang Liao, Ya-Huei Li, Li-Wei Chu, Chun-Wen Nieh, Hung-Yi Huang, Chih-Wei Chang, Ching-Hwanq Su
  • Patent number: 11222818
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a fin structure over a semiconductor substrate and forming a gate stack over the fin structure. The method also includes forming an epitaxial structure over the fin structure, and the epitaxial structure is adjacent to the gate stack. The method further includes forming a dielectric layer over the epitaxial structure and forming an opening in the dielectric layer to expose the epitaxial structure. In addition, the method includes applying a metal-containing material on the epitaxial structure while the epitaxial structure is heated so that a portion of the epitaxial structure is transformed to form a metal-semiconductor compound region.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: January 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Hsiang Chao, Min-Hsiu Hung, Chun-Wen Nieh, Ya-Huei Li, Yu-Hsiang Liao, Li-Wei Chu, Kan-Ju Lin, Kuan-Yu Yeh, Chi-Hung Chuang, Chih-Wei Chang, Ching-Hwanq Su, Hung-Yi Huang, Ming-Hsing Tsai
  • Patent number: 11011611
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate having a conductive region made of silicon, germanium or a combination thereof. The semiconductor device structure also includes an insulating layer over the semiconductor substrate and a fill metal material layer in the insulating layer. In addition, the semiconductor device structure includes a nitrogen-containing metal silicide or germanide layer between the conductive region and the fill metal material layers.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: May 18, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Min-Hsiu Hung, Yi-Hsiang Chao, Kuan-Yu Yeh, Kan-Ju Lin, Chun-Wen Nieh, Huang-Yi Huang, Chih-Wei Chang, Ching-Hwanq Su
  • Publication number: 20200357691
    Abstract: A method for manufacturing a semiconductor structure includes following operations. A sacrificial layer is formed over the conductive layer, wherein the sacrificial layer includes a first sacrificial portion over the first conductive portion, and a second sacrificial portion over the second conductive portion, and a first thickness of the first sacrificial portion is larger than a second thickness of the second sacrificial portion. The first sacrificial portion and the second sacrificial portion of the sacrificial layer, and the second conductive portion of the conductive layer are removed.
    Type: Application
    Filed: July 27, 2020
    Publication date: November 12, 2020
    Inventors: YU-HSIANG LIAO, YA-HUEI LI, LI-WEI CHU, CHUN-WEN NIEH, HUNG-YI HUANG, CHIH-WEI CHANG, CHING-HWANQ SU
  • Publication number: 20200335597
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a fin structure formed over a semiconductor substrate and a gate structure formed over the fin structure. The semiconductor device structure also includes an isolation feature over a semiconductor substrate and below the gate structure. The semiconductor device structure further includes two spacer elements respectively formed over a first sidewall and a second sidewall of the gate structure. The first sidewall is opposite to the second sidewall and the two spacer elements have hydrophobic surfaces respectively facing the first sidewall and the second sidewall. The gate structure includes a gate dielectric layer and a gate electrode layer separating the gate dielectric layer from the hydrophobic surfaces of the two spacer elements.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 22, 2020
    Inventors: Min-Hsiu HUNG, Yi-Hsiang CHAO, Kuan-Yu YEH, Kan-Ju LIN, Chun-Wen NIEH, Huang-Yi HUANG, Chih-Wei CHANG, Ching-Hwanq SU
  • Patent number: 10727117
    Abstract: A method for manufacturing a semiconductor structure includes following operations. A sacrificial layer is formed over the conductive layer, wherein the sacrificial layer includes a first sacrificial portion over the first conductive portion, and a second sacrificial portion over the second conductive portion, and a first thickness of the first sacrificial portion is larger than a second thickness of the second sacrificial portion. The first sacrificial portion and the second sacrificial portion of the sacrificial layer, and the second conductive portion of the conductive layer are removed, with at least a portion of the first conductive portion remaining over the bottom of the trench.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: July 28, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Hsiang Liao, Ya-Huei Li, Li-Wei Chu, Chun-Wen Nieh, Hung-Yi Huang, Chih-Wei Chang, Ching-Hwanq Su
  • Patent number: 10700177
    Abstract: A method for forming a semiconductor device structure is provided. The method includes providing a semiconductor substrate including a conductive region made of silicon, germanium or a combination thereof. The method also includes forming an insulating layer over the semiconductor substrate and forming an opening in the insulating layer to expose the conductive region. The method also includes performing a deposition process to form a metal layer over a sidewall and a bottom of the opening, so that a metal silicide or germanide layer is formed on the exposed conductive region by the deposition process. The method also includes performing a first in-situ etching process to etch at least a portion of the metal layer and forming a fill metal material layer in the opening.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: June 30, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Min-Hsiu Hung, Yi-Hsiang Chao, Kuan-Yu Yeh, Kan-Ju Lin, Chun-Wen Nieh, Huang-Yi Huang, Chih-Wei Chang, Ching-Hwanq Su
  • Publication number: 20200020583
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a fin structure over a semiconductor substrate and forming a gate stack over the fin structure. The method also includes forming an epitaxial structure over the fin structure, and the epitaxial structure is adjacent to the gate stack. The method further includes forming a dielectric layer over the epitaxial structure and forming an opening in the dielectric layer to expose the epitaxial structure. In addition, the method includes applying a metal-containing material on the epitaxial structure while the epitaxial structure is heated so that a portion of the epitaxial structure is transformed to form a metal-semiconductor compound region.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 16, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Hsiang CHAO, Min-Hsiu HUNG, Chun-Wen NIEH, Ya-Huei LI, Yu-Hsiang LIAO, Li-Wei CHU, Kan-Ju LIN, Kuan-Yu YEH, Chi-Hung CHUANG, Chih-Wei CHANG, Ching-Hwanq SU, Hung-Yi HUANG, Ming-Hsing TSAI
  • Publication number: 20190157141
    Abstract: A method for manufacturing a semiconductor structure includes following operations. A sacrificial layer is formed over the conductive layer, wherein the sacrificial layer includes a first sacrificial portion over the first conductive portion, and a second sacrificial portion over the second conductive portion, and a first thickness of the first sacrificial portion is larger than a second thickness of the second sacrificial portion. The first sacrificial portion and the second sacrificial portion of the sacrificial layer, and the second conductive portion of the conductive layer are removed, with at least a portion of the first conductive portion remaining over the bottom of the trench.
    Type: Application
    Filed: September 13, 2018
    Publication date: May 23, 2019
    Inventors: YU-HSIANG LIAO, YA-HUEI LI, LI-WEI CHU, CHUN-WEN NIEH, HUNG-YI HUANG, CHIH-WEI CHANG, CHING-HWANQ SU
  • Patent number: 10269926
    Abstract: A method includes placing a wafer in a wafer holder, placing the wafer holder on a loadport of a deposition tool, connecting the wafer holder to a front-end interface unit of the deposition tool, purging the front-end interface unit with nitrogen, and depositing a metal layer on the wafer in the deposition tool.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Ying Liu, Chun-Wen Nieh, Yu-Sheng Wang, Yu-Ting Lin, Wei-Yu Chen
  • Publication number: 20190097012
    Abstract: A method for forming a semiconductor device structure is provided. The method includes providing a semiconductor substrate including a conductive region made of silicon, germanium or a combination thereof. The method also includes forming an insulating layer over the semiconductor substrate and forming an opening in the insulating layer to expose the conductive region. The method also includes performing a deposition process to form a metal layer over a sidewall and a bottom of the opening, so that a metal silicide or germanide layer is formed on the exposed conductive region by the deposition process. The method also includes performing a first in-situ etching process to etch at least a portion of the metal layer and forming a fill metal material layer in the opening.
    Type: Application
    Filed: April 27, 2018
    Publication date: March 28, 2019
    Inventors: Min-Hsiu HUNG, Yi-Hsiang CHAO, Kuan-Yu YEH, Kan-Ju LIN, Chun-Wen NIEH, Huang-Yi HUANG, Chih-Wei CHANG, Ching-Hwanq SU
  • Publication number: 20180061959
    Abstract: A method includes placing a wafer in a wafer holder, placing the wafer holder on a loadport of a deposition tool, connecting the wafer holder to a front-end interface unit of the deposition tool, purging the front-end interface unit with nitrogen, and depositing a metal layer on the wafer in the deposition tool.
    Type: Application
    Filed: August 24, 2016
    Publication date: March 1, 2018
    Inventors: Yi-Ying Liu, Chun-Wen Nieh, Yu-Sheng Wang, Yu-Ting Lin, Wei-Yu Chen
  • Patent number: 9520327
    Abstract: Methods for forming electrical contacts are provided. First and second FETs are formed over a semiconductor substrate. Openings are etched in a dielectric layer formed over the substrate, where the openings extend to source and drain regions of the FETs. A hard mask is formed over the source and drain regions of FETs. A first portion of the hard mask is removed, where the first portion is formed over the source and drain regions of the first FET. First silicide layers are formed over the source and drain regions of the first FET. A second portion of the hard mask is removed, where the second portion is formed over the source and drain regions of the second FET. Second silicide layers are formed over the source and drain regions of the second FET. A metal layer is deposited within the openings to fill the openings.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: December 13, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chun-Wen Nieh, Hung-Chang Hsu, Wei-Jung Lin, Yan-Ming Tsai, Chen-Ming Lee, Mei-Yun Wang
  • Publication number: 20160035629
    Abstract: Methods for forming electrical contacts are provided. First and second FETs are formed over a semiconductor substrate. Openings are etched in a dielectric layer formed over the substrate, where the openings extend to source and drain regions of the FETs. A hard mask is formed over the source and drain regions of FETs. A first portion of the hard mask is removed, where the first portion is formed over the source and drain regions of the first FET. First silicide layers are formed over the source and drain regions of the first FET. A second portion of the hard mask is removed, where the second portion is formed over the source and drain regions of the second FET. Second silicide layers are formed over the source and drain regions of the second FET. A metal layer is deposited within the openings to fill the openings.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: CHUN-WEN NIEH, HUNG-CHANG HSU, WEI-JUNG LIN, YAN-MING TSAI, CHEN-MING LEE, MEI-YUN WANG
  • Patent number: 9165838
    Abstract: Methods for forming electrical contacts are provided. First and second FETs are formed over a semiconductor substrate. Openings are etched in a dielectric layer formed over the substrate, where the openings extend to source and drain regions of the FETs. A hard mask is formed over the source and drain regions of FETs. A first portion of the hard mask is removed, where the first portion is formed over the source and drain regions of the first FET. First silicide layers are formed over the source and drain regions of the first FET. A second portion of the hard mask is removed, where the second portion is formed over the source and drain regions of the second FET. Second silicide layers are formed over the source and drain regions of the second FET. A metal layer is deposited within the openings to fill the openings.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: October 20, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chun-Wen Nieh, Hung-Chang Hsu, Wei-Jung Lin, Yan-Ming Tsai, Chen-Ming Lee, Mei-Yun Wang
  • Publication number: 20150243565
    Abstract: Methods for forming electrical contacts are provided. First and second FETs are formed over a semiconductor substrate. Openings are etched in a dielectric layer formed over the substrate, where the openings extend to source and drain regions of the FETs. A hard mask is formed over the source and drain regions of FETs. A first portion of the hard mask is removed, where the first portion is formed over the source and drain regions of the first FET. First silicide layers are formed over the source and drain regions of the first FET. A second portion of the hard mask is removed, where the second portion is formed over the source and drain regions of the second FET. Second silicide layers are formed over the source and drain regions of the second FET. A metal layer is deposited within the openings to fill the openings.
    Type: Application
    Filed: February 26, 2014
    Publication date: August 27, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: CHUN-WEN NIEH, HUNG-CHANG HSU, WEI-JUNG LIN, YAN-MING TSAI, CHEN-MING LEE, MEI-YUN WANG
  • Patent number: 8536010
    Abstract: Methods for fabricating a semiconductor device are disclosed. A metal-rich silicide and/or a mono-silicide is formed on source/drain (S/D) regions. A millisecond anneal is provided to the metal-rich silicide and/or the mono-silicide to form a di-silicide with limited spikes at the interface between the silicide and substrate. The di-silicide has an additive which can lower the electron Schottky barrier height.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: September 17, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wen Nieh, Hung-Chang Hsu, Wen-Chi Tsai, Mei-Yun Wang, Chii-Ming Wu, Wei-Jung Lin, Chih-Wei Chang
  • Patent number: 8304319
    Abstract: Methods for fabricating a semiconductor device are disclosed. A metal-rich silicide and/or a mono-silicide is formed on source/drain (S/D) regions. A millisecond anneal is provided to the metal-rich silicide and/or the mono-silicide to form a di-silicide with limited spikes at the interface between the silicide and substrate. The di-silicide has an additive which can lower the electron Schottky barrier height.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: November 6, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wen Nieh, Hung-Chang Hsu, Wen-Chi Tsai, Mei-Yun Wang, Chii-Ming Wu, Wei-Jung Lin, Chih-Wei Chang
  • Publication number: 20120012903
    Abstract: Methods for fabricating a semiconductor device are disclosed. A metal-rich silicide and/or a mono-silicide is formed on source/drain (S/D) regions. A millisecond anneal is provided to the metal-rich silicide and/or the mono-silicide to form a di-silicide with limited spikes at the interface between the silicide and substrate. The di-silicide has an additive which can lower the electron Schottky barrier height.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 19, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Wen NIEH, Hung-Chang HSU, Wen-Chi TSAI, Mei-Yun WANG, Chii-Ming WU, Wei-Jung LIN, Chih-Wei CHANG