Patents by Inventor Chung-Jen Chou

Chung-Jen Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240079884
    Abstract: A battery balancing system includes a voltage sensing unit, a characteristic voltage selector and a control unit. The voltage sensing unit senses a battery voltage of each of the batteries connected in series in a battery group and generates corresponding battery voltage sensing signals. The characteristic voltage selector generates a characteristic voltage according to the battery voltage sensing signals. The control unit compares the characteristic voltage with a threshold voltage in a balance operation mode, to adaptively adjust the threshold voltage, and compares the battery voltage sensing signal with the adjusted threshold voltage to generate a battery balancing command, thereby executing a charge removal balancing command or a charge supplying balancing command on the corresponding battery, or thereby cease executing the charge removal balancing command or cease executing the charge supplying balancing command on the corresponding battery.
    Type: Application
    Filed: July 23, 2023
    Publication date: March 7, 2024
    Inventors: Chung-Jen Chou, Chien-Chin Huang, Shih-Hsin Tseng
  • Patent number: 9300159
    Abstract: A charging method for a rechargeable battery and a related charging architecture are provided. The provided charging method includes following steps. A characteristic curve of the rechargeable battery related to charge cycle vs. a residual capacity of a non-constant voltage charging stage under a warranty life limitation is provided. An expected residual capacity corresponding to a condition when a terminal voltage of the rechargeable battery reaches a limited charge voltage is found from the characteristic curve related to the charge cycle vs. the residual capacity of the non-constant voltage charging stage by using a current charge cycle count of the rechargeable battery. A real residual capacity corresponding to a condition when the terminal voltage of the rechargeable battery reaches the limited charge voltage approaches to the expected residual capacity by adjusting a charging current of the rechargeable battery.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: March 29, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Chein-Chung Sun, Shou-Hung Ling, Chiu-Yu Liu, Ying-Hao Hsu, Heng-Hui Tu, Chung-Jen Chou
  • Patent number: 9229064
    Abstract: A method for estimating battery degradation is provided. In this method, a remaining capacity is obtained by looking up a device characteristic table according to a steady open circuit voltage of a battery. Besides, a constant current is provided to charge the battery, and when a terminal voltage of the battery reaches to a charging preset voltage, a constant voltage is provided to charge the battery. The transition point information at the transition from a constant current mode to a constant voltage mode, which includes a transition point estimated open circuit voltage, a transition point voltage, a transition point current and a transition point battery temperature, is analyzed based on voltage, current, temperature and capacity information measured during the charging process. A battery degradation index is calculated from the transition point information.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: January 5, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Jen Chou, Chein-Chung Sun, Chiu-Yu Liu, Ying-Hao Hsu, Heng-Hui Tu, Shou-Hung Ling
  • Patent number: 9153846
    Abstract: A battery pack and a method for controlling charge-and-discharge of the battery pack by its thermoelectric property are provided, in which the battery pack has a plurality of thermal regions divided by different ranges of temperature. The battery pack includes a plurality of parallel-connected battery groups and a plurality of variable resistances. The parallel-connected battery groups are located in the thermal regions respectively, and each of the parallel-connected battery groups includes batteries connected in parallel. The variable resistances are disposed between two parallel-connected battery groups.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: October 6, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Shih-Hao Liang, Yu-Min Peng, Shou-Hung Ling, Chung-Jen Chou, Chein-Chung Sun, Chun-Ho Tai
  • Publication number: 20140167706
    Abstract: A charging method for a rechargeable battery and a related charging architecture are provided. The provided charging method includes following steps. A characteristic curve of the rechargeable battery related to charge cycle vs. a residual capacity of a non-constant voltage charging stage under a warranty life limitation is provided. An expected residual capacity corresponding to a condition when a terminal voltage of the rechargeable battery reaches a limited charge voltage is found from the characteristic curve related to the charge cycle vs. the residual capacity of the non-constant voltage charging stage by using a current charge cycle count of the rechargeable battery. A real residual capacity corresponding to a condition when the terminal voltage of the rechargeable battery reaches the limited charge voltage approaches to the expected residual capacity by adjusting a charging current of the rechargeable battery.
    Type: Application
    Filed: June 13, 2013
    Publication date: June 19, 2014
    Inventors: Chein-Chung Sun, Shou-Hung Ling, Chiu-Yu Liu, Ying-Hao Hsu, Heng-Hui Tu, Chung-Jen Chou
  • Publication number: 20140030622
    Abstract: A control method of replenishing anode fuel for DMFC system is provided. The DMFC system includes at least a fuel cell, a cathode humidity-holding layer, a fuel distribution unit, a control unit, a liquid fuel replenishment device, a fuel storage region, and a temperature detecting device. The temperature detecting device is for detecting an actual temperature of the fuel cell. The control method of replenishing anode fuel includes utilizing the control unit to adjust a fuel replenishment amount supplied from the liquid fuel replenishment device. The fuel replenishment amount is the sum of a basic replenishment amount and a replenishment amount for temperature correction. The basic replenishment amount is a function of actual discharge current of the fuel cell. The replenishment amount for temperature correction is a function of the difference between the actual temperature of the fuel cell and the target temperature.
    Type: Application
    Filed: December 6, 2012
    Publication date: January 30, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ching-Jung Liu, Ku-Yen Kang, Chun-Ho Tai, Chung-Jen Chou, Shou-Hung Ling
  • Publication number: 20130127423
    Abstract: A battery pack and a method for controlling charge-and-discharge of the battery pack by its thermoelectric property are provided, in which the battery pack has a plurality of thermal regions divided by different ranges of temperature. The battery pack includes a plurality of parallel-connected battery groups and a plurality of variable resistances. The parallel-connected battery groups are located in the thermal regions respectively, and each of the parallel-connected battery groups includes batteries connected in parallel. The variable resistances are disposed between two parallel-connected battery groups.
    Type: Application
    Filed: June 26, 2012
    Publication date: May 23, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Shih-Hao Liang, Yu-Min Peng, Shou-Hung Ling, Chung-Jen Chou, Chein-Chung Sun, Chun-Ho Tai
  • Publication number: 20130029239
    Abstract: A shutdown and self-maintenance operation process of a liquid fuel cell system is introduced. The liquid fuel cell system gives out a shutdown signal and a liquid fuel cell of the liquid fuel cell system stops discharging when receiving the shutdown signal. Thereafter, a self-maintenance operation consisting of the following four steps will be performed: (a) Supply of the cathode gas is stopped in the liquid fuel cell system. (b) After a first duration, the supply of the cathode gas is started. (c) The liquid fuel cell discharges until the output power of the liquid fuel cell is less than or equal to a first predetermined value. (d) The liquid fuel cell stops discharging and the supply of the cathode gas is stopped again. The (a) to (d) four steps are repeated several times before the liquid fuel cell system is completely stopped.
    Type: Application
    Filed: January 9, 2012
    Publication date: January 31, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ku-Yen Kang, Chun-Ho Tai, Ching-Jung Liu, Shou-Hung Ling, Chung-Jen Chou, Yin-Wen Tsai