Patents by Inventor Chunling Fu

Chunling Fu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9873713
    Abstract: The present invention relates to a process for efficiently synthesizing highly optically active 1,3-disubstituted allenes, i.e., a one-step process for preparing highly optically active 1,3-disubstituted allenes by using a functionalized terminal alkyne, an aldehyde and a chiral ?,?-diphenyl prolinol as reactants under the catalysis of a divalent copper salt. The operation of the process is simple, and the raw materials and reagents are readily available. The process has a broad-spectrum of substrates and a good compatibility for a wide variety of functional groups such as glycosidic units, primary alcohols, secondary alcohols, tertiary alcohols, amides, malonates, etc., and does not require the protection for the functional groups. The obtained axially chiral allene has a moderate to high yield and a good diastereoselectivity or enantioselectivity.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: January 23, 2018
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Shengming Ma, Xin Huang, Chunling Fu
  • Publication number: 20160185812
    Abstract: The present invention relates to a process for efficiently synthesizing highly optically active 1,3-disubstituted allenes, i.e., a one-step process for preparing highly optically active 1,3-disubstituted allenes by using a functionalized terminal alkyne, an aldehyde and a chiral ?,?-diphenyl prolinol as reactants under the catalysis of a divalent copper salt. The operation of the process is simple, and the raw materials and reagents are readily available. The process has a broad-spectrum of substrates and a good compatibility for a wide variety of functional groups such as glycosidic units, primary alcohols, secondary alcohols, tertiary alcohols, amides, malonates, etc., and does not require the protection for the functional groups. The obtained axially chiral allene has a moderate to high yield and a good diastereoselectivity or enantioselectivity.
    Type: Application
    Filed: October 10, 2014
    Publication date: June 30, 2016
    Applicant: ZHEJIANG UNIVERSITY
    Inventors: Shengming MA, Xin HUANG, Chunling FU
  • Patent number: 9243011
    Abstract: The present invention relates to the compound of dialkyl(2-alkoxy-6-aminophenyl)phosphine and the preparation method thereof and the application in the palladium catalyzed coupling reactions of aryl chloride and ketone. The dialkyl(2-alkoxy-6-aminophenyl)phosphine of the present invention could coordinate with the palladium catalyst to highly selectively activate the inert carbon-chlorine bond, and to catalyze direct arylation reaction in the ?-position of ketones to produce corresponding coupling compounds. The preparation method of the present invention is a simple one-step method which produces the air-stable dialkyl(2-alkoxy-6-aminophenyl)phosphine. Compared with the synthetic routes of ligands to be used in the activation of carbon-chlorine bonds in the prior arts, the preparation method of the present invention has the advantages of short route and easy operation.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: January 26, 2016
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Shengming Ma, Bo Lv, Chunling Fu
  • Patent number: 9006491
    Abstract: The current invention relates to the structure, synthesis of dialkyl(2,4,6- or 2,6-alkoxyphenyl)phosphine or its tetrafluoroborate, as well as its applications in the palladium catalyzed carbon-chlorine bond activation for Suzuki coupling reactions and carbon-nitrogen bond formation reactions. The dialkyl(2,4,6- or 2,6-alkoxyphenyl)phosphine or its tetrafluoroborate could coordinate with the palladium catalyst to activate the inert carbon-chlorine bond highly selectively and catalyze Suzuki coupling reaction with arylboronic acid or carbon-nitrogen bond formation reaction with organic amines. The current invention uses only one step to synthesize dialkyl(2,4,6- or 2,6-alkoxyphenyl)phosphine and its tetrafluoroborate is stable in the air. Compared with known synthetic routes of ligands used in activating carbon-chlorine bonds, the method of current invention is short, easy to operate.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: April 14, 2015
    Assignee: Zhejiang University
    Inventors: Shengming Ma, Bo Lü, Chunling Fu
  • Publication number: 20140309422
    Abstract: The present invention relates to the compound of dialkyl(2-alkoxy-6-aminophenyl)phosphine and the preparation method thereof and the application in the palladium catalyzed coupling reactions of aryl chloride and ketone. The dialkyl(2-alkoxy-6-aminophenyl)phosphine of the present invention could coordinate with the palladium catalyst to highly selectively activate the inert carbon-chlorine bond, and to catalyze direct arylation reaction in the ?-position of ketones to produce corresponding coupling compounds. The preparation method of the present invention is a simple one-step method which produces the air-stable dialkyl(2-alkoxy-6-aminophenyl)phosphine. Compared with the synthetic routes of ligands to be used in the activation of carbon-chlorine bonds in the prior arts, the preparation method of the present invention has the advantages of short route and easy operation.
    Type: Application
    Filed: July 3, 2012
    Publication date: October 16, 2014
    Applicant: ZHEJIANG UNIVERSITY
    Inventors: Shengming Ma, Bo Lv, Chunling Fu
  • Publication number: 20120197030
    Abstract: The current invention relates to the structure, synthesis of dialkyl(2,4,6- or 2,6-alkoxyphenyl)phosphine or its tetrafluoroborate, as well as its applications in the palladium catalyzed carbon-chlorine bond activation for Suzuki coupling reactions and carbon-nitrogen bond formation reactions. The dialkyl(2,4,6- or 2,6-alkoxyphenyl)phosphine or its tetrafluoroborate could coordinate with the palladium catalyst to activate the inert carbon-chlorine bond highly selectively and catalyze Suzuki coupling reaction with arylboronic acid or carbon-nitrogen bond formation reaction with organic amines. The current invention uses only one step to synthesize dialkyl(2,4,6- or 2,6-alkoxyphenyl)phosphine and its tetrafluoroborate is stable in the air. Compared with known synthetic routes of ligands used in activating carbon-chlorine bonds, the method of current invention is short, easy to operate.
    Type: Application
    Filed: December 21, 2009
    Publication date: August 2, 2012
    Applicant: Zhejiang University
    Inventors: Shengming Ma, Bo Lü, Chunling Fu