Patents by Inventor Chunyan Cui

Chunyan Cui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11402538
    Abstract: Provided is a gravity gradient measurement apparatus and measuring method, wherein a turntable rotates horizontally around an earth-vertical axis, a vacuum layer is arranged on the turntable defining a first chamber, a first three-axis accelerometer and a second three-axis accelerometer are located in the first chamber, the first three-axis accelerometer and the second three-axis accelerometer are arranged symmetrically on an x axis with respect to an origin of coordinates. Both the first three-axis accelerometer and the second three-axis accelerometer have a distance of R from the origin of coordinates. The first three-axis accelerometer and the second three-axis accelerometer are arranged symmetrically on an z axis with respect to the origin of coordinates, and the first three-axis accelerometer and the second three-axis accelerometer are spaced at a distance of h on the z axis. The measurement module uses measurements of the accelerometers to determine gravity gradients on the coordinate axes.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: August 2, 2022
    Assignee: INSTITUTE OF ELECTRICAL ENGINEERING, CHINESE ACADEMY OF SCIENCES
    Inventors: Xinning Hu, Qiuliang Wang, Jinyan Lu, Hui Wang, Chunyan Cui
  • Publication number: 20200073010
    Abstract: Provided is a gravity gradient measurement apparatus and measuring method, wherein a turntable rotates horizontally around an earth-vertical axis, a vacuum layer is arranged on the turntable defining a first chamber, a first three-axis accelerometer and a second three-axis accelerometer are located in the first chamber, the first three-axis accelerometer and the second three-axis accelerometer are arranged symmetrically on an x axis with respect to an origin of coordinates. Both the first three-axis accelerometer and the second three-axis accelerometer have a distance of R from the origin of coordinates. The first three-axis accelerometer and the second three-axis accelerometer are arranged symmetrically on an z axis with respect to the origin of coordinates, and the first three-axis accelerometer and the second three-axis accelerometer are spaced at a distance of h on the z axis. The measurement module uses measurements of the accelerometers to determine gravity gradients on the coordinate axes.
    Type: Application
    Filed: June 30, 2017
    Publication date: March 5, 2020
    Inventors: Xinning HU, Qiuliang WANG, Jinyan LU, Hui WANG, Chunyan CUI
  • Patent number: 9712093
    Abstract: A device and a method for inhibiting vibration of a superconducting magnetic suspension rotor. The device comprises a rotor cavity housing, lateral coils, a superconducting rotor with a rotor top plane, a copper plate, pole shoes, a z-axial vibration measuring sensor, an x-axial vibration measuring sensor, a y-axial vibration measuring sensor, and a copper ring, the pole shoes having a spherical inner surface and being arranged symmetrically up and down so as to form a rotor cavity; the annular lateral coils being closely adjacent to an outside cylindrical surface of the rotor cavity housing and fixed to the same; the z-axial vibration measuring sensor being fixed to a central region of the copper plate; the x-axial vibration measuring sensor being mounted along an x-coordinate axis and the y-axial vibration measuring sensor mounted on a on the copper ring which is mounted along an equatorial plane of the rotor.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: July 18, 2017
    Assignee: Institute of Electrical Engineering, Chinese Academy of Sciences
    Inventors: Xinning Hu, Qiuliang Wang, Chunyan Cui, Hui Wang
  • Patent number: 9612356
    Abstract: A low-temperature superconducting device for measuring gravity, includes a low-temperature container, a cryocooler, a rotor chamber, a superconducting rotor, an upper levitation coil, a lower levitation coil, an upper electrode, an intermediate electrode, a lower electrode, a magnetic shielding chamber and a superconducting quantum interference device. By cooling the whole low-temperature superconducting device using a cryocooler, the intermediate electrode disposed in the body of the magnetic shielding chamber will generate an output voltage when the superconducting rotor is displaced due to a change of gravity. Thus, the superconducting quantum interference device can make the superconducting rotor return to the central balance position by adjusting the operating current of the upper levitation coil or the lower levitation coil. A change of gravity can be determined based on the operating current fed back to the upper levitation coil or the lower levitation coil.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: April 4, 2017
    Assignee: Institute of Electrical Engineering, Chinese Academy of Sciences
    Inventors: Xinning Hu, Qiuliang Wang, Chunyan Cui, Hui Wang, Yinming Dai
  • Publication number: 20150247949
    Abstract: A low-temperature superconducting device for measuring gravity, includes a low-temperature container, a cryocooler, a rotor chamber, a superconducting rotor, an upper levitation coil, a lower levitation coil, an upper electrode, an intermediate electrode, a lower electrode, a magnetic shielding chamber and a superconducting quantum interference device. By cooling the whole low-temperature superconducting device using a cryocooler, the intermediate electrode disposed in the body of the magnetic shielding chamber will generate an output voltage when the superconducting rotor is displaced due to a change of gravity. Thus, the superconducting quantum interference device can make the superconducting rotor return to the central balance position by adjusting the operating current of the upper levitation coil or the lower levitation coil. A change of gravity can be determined based on the operating current fed back to the upper levitation coil or the lower levitation coil.
    Type: Application
    Filed: August 19, 2013
    Publication date: September 3, 2015
    Inventors: Xinning Hu, Qiuliang Wang, Chunyan Cui, Hui Wang, Yinming Dai
  • Publication number: 20150011395
    Abstract: A free liquid helium volatilization superconductive magnetic suspension device includes a low temperature container, a refrigeration, a cold screen, a liquid helium container, a superconductive rotor, a suspension coil, a rotor chamber, a liquid tube, a condenser and a pole-axis displacement sensor. The heat generated by the wires of the suspension coil can be prevented transferring to the liquid helium container by the room temperature current lead joint, the high temperature superconducting current lead joint and low temperature superconducting current lead joint. Therefore the volatilization of the liquid helium in the liquid helium container can be reduced. The status of free liquid helium volatilization in the liquid helium container can be reached through refrigeration cooling condenser to liquefy the helium. The device needs not to be input the liquid helium time after time and can run independently for a long term.
    Type: Application
    Filed: September 27, 2012
    Publication date: January 8, 2015
    Applicant: Institute of Electrical Engineering, Chinese Academy of Sciences
    Inventors: Xinning Hu, Qiuliang Wang, Yinming Dai, Baozhi Zhao, Hui Wang, Chunyan Cui
  • Publication number: 20130285624
    Abstract: A device and a method for inhibiting vibration of a superconducting magnetic suspension rotor. The device comprises a rotor cavity housing, lateral coils, a superconducting rotor with a rotor top plane, a copper plate, pole shoes, a z-axial vibration measuring sensor, an x-axial vibration measuring sensor, a y-axial vibration measuring sensor, and a copper ring, the pole shoes having a spherical inner surface and being arranged symmetrically up and down so as to form a rotor cavity; the annular lateral coils being closely adjacent to an outside cylindrical surface of the rotor cavity housing and fixed to the same; the z-axial vibration measuring sensor being fixed to a central region of the copper plate; the x-axial vibration measuring sensor being mounted along an x-coordinate axis and the y-axial vibration measuring sensor mounted on a on the copper ring which is mounted along an equatorial plane of the rotor.
    Type: Application
    Filed: August 26, 2011
    Publication date: October 31, 2013
    Applicant: Institute of Electrical Engineering, Chinese Academy of Sciences
    Inventors: Xinning Hu, Qiuliang Wang, Chunyan Cui, Hui Wang