Patents by Inventor Clark D. Boyd

Clark D. Boyd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190058104
    Abstract: A method for forming a unique, environmentally-friendly micron scale autonomous electrical power source is provided in a configuration that generates renewable energy for use in electronic systems, electronic devices and electronic system components. The configuration includes a first conductor with a facing surface conditioned to have a low work function, a second conductor with a facing surface having a comparatively higher work function, and a dielectric layer, not more than 200 nm thick, sandwiched between the respective facing surfaces of the first conductor and the second conductor. The autonomous electrical power source formed according to the disclosed method is configured to harvest minimal thermal energy from any source in an environment above absolute zero.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 21, 2019
    Inventor: Clark D. BOYD
  • Publication number: 20190043918
    Abstract: An integrated circuit system, structure and/or component is provided that includes an integrated electrical power source in a form of a unique, environmentally-friendly energy harvesting element or component. The energy harvesting component provides a mechanism for generating autonomous renewable energy, or a renewable energy supplement, in the integrated circuit system, structure and/or component. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. An energy harvesting component includes a plurality of energy harvesting elements electrically connected to one another to increase a power output of the electric harvesting component.
    Type: Application
    Filed: October 8, 2018
    Publication date: February 7, 2019
    Inventor: Clark D. BOYD
  • Publication number: 20190013352
    Abstract: A unique, environmentally-friendly energy harvesting element is provided for generating autonomous renewable energy, or a renewable energy supplement, in electronic systems, electronic devices and electronic system components. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured in a manner to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. Electric leads are provided to connect the energy harvesting element to a load to power the load with the energy harvesting element. An energy harvesting component is also provided that includes a plurality of energy harvesting elements electrically connected to one another to increase a power output of the electric harvesting component.
    Type: Application
    Filed: September 17, 2018
    Publication date: January 10, 2019
    Inventor: Clark D. BOYD
  • Publication number: 20190013456
    Abstract: A method for forming a unique, environmentally-friendly energy harvesting element is provided. A configuration of the energy harvesting element causes the energy harvesting element to autonomously generate renewable energy for use in electronic systems, electronic devices and electronic system components. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured in a manner to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. An energy harvesting component is also provided that includes a plurality of energy harvesting elements electrically connected to one another to increase a power output of the electric harvesting component.
    Type: Application
    Filed: August 20, 2018
    Publication date: January 10, 2019
    Inventor: Clark D. Boyd
  • Publication number: 20180323363
    Abstract: A method is provided for producing an electrically-powered device and/or component that is embeddable in a solid structural component, and a system, a produced device and/or a produced component is provided. The produced electrically powered device includes an attached autonomous electrical power source in a form of a unique, environmentally-friendly structure configured to transform thermal energy at any temperature above absolute zero to an electric potential without any external stimulus including physical movement or deformation energy. The autonomous electrical power source component provides a mechanism for generating renewable energy as primary power for the electrically-powered device and/or component once an integrated structure including the device and/or component is deployed in an environment that restricts future access to the electrical power source for servicing, recharge, replacement, replenishment or the like.
    Type: Application
    Filed: July 1, 2018
    Publication date: November 8, 2018
    Inventors: Clark D BOYD, Bradbury R FACE, Jeffrey D SHEPARD
  • Patent number: 10109672
    Abstract: An electrically-powered device, structure and/or component is provided that includes an attached electrical power source in a form of a unique, environmentally-friendly energy harvesting element or component. The energy harvesting component provides a mechanism for generating autonomous renewable energy, or a renewable energy supplement, in the integrated circuit system, structure and/or component. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured in a manner to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. The energy harvesting component includes a plurality of energy harvesting elements electrically connected to one another to increase an electrical power output.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: October 23, 2018
    Assignee: Face International Corporation
    Inventors: Clark D Boyd, Bradbury R Face, Jeffrey D Shepard
  • Patent number: 10110163
    Abstract: A security system is provided that integrates a unique set of structural features for concealing self-powered sensor and communication devices in aesthetically neutral, or camouflaged, packages that include energy harvesting systems that provide autonomous electrical power to sensors, data processing and wireless communication components in the portable, self-contained packages. Color-matched, image-matched and/or texture-matched optical layers are formed over energy harvesting components, including photovoltaic energy collecting components. Optical layers are tuned to scatter selectable wavelengths of electromagnetic energy back in an incident direction while allowing remaining wavelengths of electromagnetic energy to pass through the layers to the energy collecting components below.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: October 23, 2018
    Assignee: Face International Corporation
    Inventors: Clark D Boyd, Bradbury R Face, Jeffrey D Shepard
  • Patent number: 10109781
    Abstract: A method for forming a unique, environmentally-friendly micron scale autonomous electrical power source is provided in a configuration that generates renewable energy for use in electronic systems, electronic devices and electronic system components. The configuration includes a first conductor with a facing surface conditioned to have a low work function, a second conductor with a facing surface having a comparatively higher work function, and a dielectric layer, not more than 200 nm thick, sandwiched between the respective facing surfaces of the first conductor and the second conductor. The autonomous electrical power source formed according to the disclosed method is configured to harvest minimal thermal energy from any source in an environment above absolute zero.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: October 23, 2018
    Assignee: Face International Corporation
    Inventor: Clark D Boyd
  • Publication number: 20180294748
    Abstract: An electrically-powered device, structure and/or component is provided that includes an attached autonomous electrical power source in a form of a unique, environmentally-friendly structure that is configured to transform thermal energy at any temperature above absolute zero to an electric potential without any external stimulus including physical movement or deformation energy. The autonomous electrical power source component provides a mechanism for generating renewable energy, or a renewable energy supplement, as primary or auxiliary power for the electrically-powered device, structure and/or component. The autonomous electrical power source component is formed of one or more elements, each of which includes a first conductor having a surface with a comparatively low work function, a second conductor having a surface with the comparatively high work function and a dielectric layer on a scale of 200 nm or less interposed between the conductors.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 11, 2018
    Inventors: Clark D. BOYD, Bradbury R. FACE, Jeffrey D. SHEPARD
  • Publication number: 20180294393
    Abstract: A unique, environmentally-friendly micron scale autonomous electrical power source is provided for generating renewable energy, or a renewable energy supplement, in electronic systems, electronic devices and electronic system components. The autonomous electrical power source includes a first conductor with a facing surface conditioned to have a low work function, a second conductor with a facing surface having a comparatively higher work function, and a dielectric layer of not more than 200 nm in thickness sandwiched between the respective facing surfaces of the first conductor and the second conductor. The autonomous electrical power source is configured to harvest minimal thermal energy from any source in an environment above absolute zero. An autonomous electrical power source component is also provided that includes a plurality of autonomous electrical power source constituent elements electrically connected to one another to increase a power output of the autonomous electrical power source.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 11, 2018
    Inventor: Clark D BOYD
  • Publication number: 20180294399
    Abstract: A method for forming a unique, environmentally-friendly micron scale autonomous electrical power source is provided in a configuration that generates renewable energy for use in electronic systems, electronic devices and electronic system components. The configuration includes a first conductor with a facing surface conditioned to have a low work function, a second conductor with a facing surface having a comparatively higher work function, and a dielectric layer, not more than 200 nm thick, sandwiched between the respective facing surfaces of the first conductor and the second conductor. The autonomous electrical power source formed according to the disclosed method is configured to harvest minimal thermal energy from any source in an environment above absolute zero.
    Type: Application
    Filed: April 10, 2017
    Publication date: October 11, 2018
    Inventor: Clark D. BOYD
  • Patent number: 10096648
    Abstract: An integrated circuit system, structure and/or component is provided that includes an integrated electrical power source in a form of a unique, environmentally-friendly energy harvesting element or component. The energy harvesting component provides a mechanism for generating autonomous renewable energy, or a renewable energy supplement, in the integrated circuit system, structure and/or component. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. An energy harvesting component includes a plurality of energy harvesting elements electrically connected to one another to increase a power output of the electric harvesting component.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: October 9, 2018
    Assignee: Face International Corporation
    Inventor: Clark D Boyd
  • Patent number: 10079561
    Abstract: A unique, environmentally-friendly energy harvesting element is provided for generating autonomous renewable energy, or a renewable energy supplement, in electronic systems, electronic devices and electronic system components. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured in a manner to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. Electric leads are provided to connect the energy harvesting element to a load to power the load with the energy harvesting element. An energy harvesting component is also provided that includes a plurality of energy harvesting elements electrically connected to one another to increase a power output of the electric harvesting component.
    Type: Grant
    Filed: April 9, 2016
    Date of Patent: September 18, 2018
    Assignee: Face International Corporation
    Inventor: Clark D Boyd
  • Patent number: 10056538
    Abstract: A method for forming a unique, environmentally-friendly energy harvesting element is provided. A configuration of the energy harvesting element causes the energy harvesting element to autonomously generate renewable energy for use in electronic systems, electronic devices and electronic system components. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured in a manner to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. An energy harvesting component is also provided that includes a plurality of energy harvesting elements electrically connected to one another to increase a power output of the electric harvesting component.
    Type: Grant
    Filed: April 9, 2016
    Date of Patent: August 21, 2018
    Assignee: Face International Corporation
    Inventor: Clark D Boyd
  • Publication number: 20180212079
    Abstract: A system is provided that integrates an autonomous energy harvesting capacity in buildings in an aesthetically neutral manner. A unique set of structural features combine to implement a hidden energy harvesting system on a surface of the building to provide electrical power to the building, and/or to electrically-powered devices in the building. Color-matched, image-matched and/or texture-matched optical layers are formed over energy harvesting components, including photovoltaic energy collecting components. Optical layers are tuned to scatter selectable wavelengths of electromagnetic energy back in an incident direction while allowing remaining wavelengths of electromagnetic energy to pass through the layers to the energy collecting components below.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 26, 2018
    Inventors: Clark D BOYD, Bradbury R FACE, Jeffrey D SHEPARD
  • Publication number: 20180212553
    Abstract: A system is provided that integrates an autonomous energy harvesting capacity in a mobile device in an aesthetically neutral manner. A unique set of structural features combine to implement a hidden energy harvesting system on a surface of the mobile device body structure or casing to provide electrical power to the mobile device, and/or to individually electrically-powered components in the mobile device. Color-matched, image-matched and/or texture-matched optical layers are formed over energy harvesting components, including photovoltaic energy collecting components. Optical layers are tuned to scatter selectable wavelengths of electromagnetic energy back in an incident direction while allowing remaining wavelengths of electromagnetic energy to pass through the layers to the energy collecting components below. The layers appear opaque when observed from a light incident side, while allowing at least 50%, and as much as 80+%, of the energy impinging on the energy or incident side to pass through the layer.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 26, 2018
    Inventors: Clark D BOYD, Bradbury R FACE, Jeffrey D SHEPARD
  • Publication number: 20180212564
    Abstract: A method is provided that integrates an autonomous energy harvesting capacity in vehicles in an aesthetically neutral manner. A unique set of structural features combine to implement a hidden energy harvesting system on a surface of the vehicle to provide electrical power to the vehicle, and/or to electrically-powered devices in the vehicle. Color-matched, image-matched and/or texture-matched optical layers are formed over energy harvesting components, including photovoltaic energy collecting components. Optical layers are tuned to scatter selectable wavelengths of electromagnetic energy back in an incident direction while allowing remaining wavelengths of electromagnetic energy to pass through the layers to the energy collecting components below.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 26, 2018
    Inventors: Clark D. BOYD, Bradbury R. FACE, Jeffrey D. SHEPARD
  • Publication number: 20180212563
    Abstract: A security system is provided that integrates a unique set of structural features for concealing self-powered sensor and communication devices in aesthetically neutral, or camouflaged, packages that include energy harvesting systems that provide autonomous electrical power to sensors, data processing and wireless communication components in the portable, self-contained packages. Color-matched, image-matched and/or texture-matched optical layers are formed over energy harvesting components, including photovoltaic energy collecting components. Optical layers are tuned to scatter selectable wavelengths of electromagnetic energy back in an incident direction while allowing remaining wavelengths of electromagnetic energy to pass through the layers to the energy collecting components below.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 26, 2018
    Inventors: Clark D. BOYD, Bradbury R. FACE, Jeffrey D. SHEPARD
  • Publication number: 20180210122
    Abstract: Methods are provided for forming a particular multi-layer micron-sized particle that is substantially transparent, yet that exhibits selectable coloration based on its physical properties. The disclosed physical properties of the particle are controllably selectable refractive indices to provide an opaque-appearing energy transmissive material when pluralities of the particles are suspended in a substantially transparent matrix material. Multiply-layered (up to 30+ constituent layers) particles result in an overall particle diameter of less than 5 microns. The material suspensions render the particles deliverable as aspirated or aerosol compositions onto substrates to form layers that selectively scatter specific wavelengths of electromagnetic energy while allowing remaining wavelengths of the incident energy to pass.
    Type: Application
    Filed: January 25, 2017
    Publication date: July 26, 2018
    Inventors: Clark D. BOYD, Bradbury R. FACE, Jeffrey D. SHEPARD
  • Publication number: 20180212560
    Abstract: A method is provided that integrates a unique set of structural features for concealing self-powered sensor and communication devices in aesthetically neutral, or camouflaged, packages that include energy harvesting systems that provide autonomous electrical power to sensors, data processing and wireless communication components in the portable, self-contained packages. Color-matched, image-matched and/or texture-matched optical layers are formed over energy harvesting components, including photovoltaic energy collecting components. Optical layers are tuned to scatter selectable wavelengths of electromagnetic energy back in an incident direction while allowing remaining wavelengths of electromagnetic energy to pass through the layers to the energy collecting components below.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 26, 2018
    Inventors: Clark D. BOYD, Bradbury R. FACE, Jeffrey D. SHEPARD