Patents by Inventor Claudia Comi

Claudia Comi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220404150
    Abstract: A frequency modulation MEMS triaxial gyroscope, having two mobile masses; a first and a second driving body coupled to the mobile masses through elastic elements rigid in a first direction and compliant in a second direction transverse to the first direction; and a third and a fourth driving body coupled to the mobile masses through elastic elements rigid in the second direction and compliant in the first direction. A first and a second driving element are coupled to the first and second driving bodies for causing the mobile masses to translate in the first direction in phase opposition. A third and a fourth driving element are coupled to the third and fourth driving bodies for causing the mobile masses to translate in the second direction and in phase opposition. An out-of-plane driving element is coupled to the first and second mobile masses for causing a translation in a third direction, in phase opposition.
    Type: Application
    Filed: August 23, 2022
    Publication date: December 22, 2022
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Alessandro TOCCHIO, Luca Giuseppe FALORNI, Claudia COMI, Valentina ZEGA
  • Patent number: 11448507
    Abstract: A frequency modulation MEMS triaxial gyroscope, having two mobile masses; a first and a second driving body coupled to the mobile masses through elastic elements rigid in a first direction and compliant in a second direction transverse to the first direction; and a third and a fourth driving body coupled to the mobile masses through elastic elements rigid in the second direction and compliant in the first direction. A first and a second driving element are coupled to the first and second driving bodies for causing the mobile masses to translate in the first direction in phase opposition. A third and a fourth driving element are coupled to the third and fourth driving bodies for causing the mobile masses to translate in the second direction and in phase opposition. An out-of-plane driving element is coupled to the first and second mobile masses for causing a translation in a third direction, in phase opposition.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: September 20, 2022
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Alessandro Tocchio, Luca Giuseppe Falorni, Claudia Comi, Valentina Zega
  • Publication number: 20200096339
    Abstract: A frequency modulation MEMS triaxial gyroscope, having two mobile masses; a first and a second driving body coupled to the mobile masses through elastic elements rigid in a first direction and compliant in a second direction transverse to the first direction; and a third and a fourth driving body coupled to the mobile masses through elastic elements rigid in the second direction and compliant in the first direction. A first and a second driving element are coupled to the first and second driving bodies for causing the mobile masses to translate in the first direction in phase opposition. A third and a fourth driving element are coupled to the third and fourth driving bodies for causing the mobile masses to translate in the second direction and in phase opposition. An out-of-plane driving element is coupled to the first and second mobile masses for causing a translation in a third direction, in phase opposition.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Alessandro TOCCHIO, Luca Giuseppe FALORNI, Claudia COMI, Valentina ZEGA
  • Patent number: 10520315
    Abstract: A frequency modulation MEMS triaxial gyroscope, having two mobile masses; a first and a second driving body coupled to the mobile masses through elastic elements rigid in a first direction and compliant in a second direction transverse to the first direction; and a third and a fourth driving body coupled to the mobile masses through elastic elements rigid in the second direction and compliant in the first direction. A first and a second driving element are coupled to the first and second driving bodies for causing the mobile masses to translate in the first direction in phase opposition. A third and a fourth driving element are coupled to the third and fourth driving bodies for causing the mobile masses to translate in the second direction and in phase opposition. An out-of-plane driving element is coupled to the first and second mobile masses for causing a translation in a third direction, in phase opposition.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: December 31, 2019
    Assignee: STMicroelectronics S.R.L.
    Inventors: Alessandro Tocchio, Luca Giuseppe Falorni, Claudia Comi, Valentina Zega
  • Patent number: 9989364
    Abstract: An integrated detection structure has a first inertial mass and a second inertial mass, each of which is elastically anchored to a substrate and has a linear movement along a first horizontal axis, a first detection movement of rotation about a first axis of rotation parallel to a second horizontal axis and a second detection movement of translation along the second horizontal axis; driving electrodes cause linear movement of the inertial masses, in opposite directions of the first horizontal axis; a pair of flexural resonator elements and a pair of torsional resonator elements are elastically coupled to the inertial masses, the torsional resonator elements having a resonant movement of rotation about a second axis of rotation and a third axis of rotation, parallel to one another and to the first axis of rotation.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: June 5, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Claudia Comi, Alberto Corigliano, Leonardo Baldasarre
  • Publication number: 20180112981
    Abstract: A frequency modulation MEMS triaxial gyroscope, having two mobile masses; a first and a second driving body coupled to the mobile masses through elastic elements rigid in a first direction and compliant in a second direction transverse to the first direction; and a third and a fourth driving body coupled to the mobile masses through elastic elements rigid in the second direction and compliant in the first direction. A first and a second driving element are coupled to the first and second driving bodies for causing the mobile masses to translate in the first direction in phase opposition. A third and a fourth driving element are coupled to the third and fourth driving bodies for causing the mobile masses to translate in the second direction and in phase opposition. An out-of-plane driving element is coupled to the first and second mobile masses for causing a translation in a third direction, in phase opposition.
    Type: Application
    Filed: June 30, 2017
    Publication date: April 26, 2018
    Inventors: Alessandro TOCCHIO, Luca Giuseppe FALORNI, Claudia COMI, Valentina ZEGA
  • Publication number: 20160305780
    Abstract: An integrated detection structure has a first inertial mass and a second inertial mass, each of which is elastically anchored to a substrate and has a linear movement along a first horizontal axis, a first detection movement of rotation about a first axis of rotation parallel to a second horizontal axis and a second detection movement of translation along the second horizontal axis; driving electrodes cause linear movement of the inertial masses, in opposite directions of the first horizontal axis; a pair of flexural resonator elements and a pair of torsional resonator elements are elastically coupled to the inertial masses, the torsional resonator elements having a resonant movement of rotation about a second axis of rotation and a third axis of rotation, parallel to one another and to the first axis of rotation.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Inventors: Claudia Comi, Alberto Corigliano, Leonardo Baldasarre
  • Patent number: 9389077
    Abstract: An integrated detection structure has a first inertial mass and a second inertial mass, each of which is elastically anchored to a substrate and has a linear movement along a first horizontal axis, a first detection movement of rotation about a first axis of rotation parallel to a second horizontal axis and a second detection movement of translation along the second horizontal axis; driving electrodes cause linear movement of the inertial masses, in opposite directions of the first horizontal axis; a pair of flexural resonator elements and a pair of torsional resonator elements are elastically coupled to the inertial masses, the torsional resonator elements having a resonant movement of rotation about a second axis of rotation and a third axis of rotation, parallel to one another and to the first axis of rotation.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: July 12, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Claudia Comi, Alberto Corigliano, Leonardo Baldasarre
  • Patent number: 9377482
    Abstract: A detection structure for a z-axis resonant accelerometer is provided with an inertial mass anchored to a substrate by means of elastic anchorage elements so as to be suspended above the substrate and perform an inertial movement of rotation about a first axis of rotation belonging to a plane of main extension of the inertial mass, in response to an external acceleration acting along a vertical axis transverse with respect to the plane; and a first resonator element and a second resonator element, which are mechanically coupled to the inertial mass by respective elastic supporting elements, which enable a movement of rotation about a second axis of rotation and a third axis of rotation, in a resonance condition. In particular, the second axis of rotation and the third axis of rotation are parallel to one another, and are moreover parallel to the first axis of rotation of the inertial mass.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: June 28, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Claudia Comi, Alberto Corigliano, Sarah Zerbini
  • Patent number: 9354246
    Abstract: A MEMS resonant accelerometer is disclosed, having: a proof mass coupled to a first anchoring region via a first elastic element so as to be free to move along a sensing axis in response to an external acceleration; and a first resonant element mechanically coupled to the proof mass through the first elastic element so as to be subject to a first axial stress when the proof mass moves along the sensing axis and thus to a first variation of a resonant frequency. The MEMS resonant accelerometer is further provided with a second resonant element mechanically coupled to the proof mass through a second elastic element so as to be subject to a second axial stress when the proof mass moves along the sensing axis, substantially opposite to the first axial stress, and thus to a second variation of a resonant frequency, opposite to the first variation.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: May 31, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Barbara Simoni, Claudia Comi, Alberto Corigliano
  • Publication number: 20150362522
    Abstract: A MEMS resonant accelerometer is disclosed, having: a proof mass coupled to a first anchoring region via a first elastic element so as to be free to move along a sensing axis in response to an external acceleration; and a first resonant element mechanically coupled to the proof mass through the first elastic element so as to be subject to a first axial stress when the proof mass moves along the sensing axis and thus to a first variation of a resonant frequency. The MEMS resonant accelerometer is further provided with a second resonant element mechanically coupled to the proof mass through a second elastic element so as to be subject to a second axial stress when the proof mass moves along the sensing axis, substantially opposite to the first axial stress, and thus to a second variation of a resonant frequency, opposite to the first variation.
    Type: Application
    Filed: July 26, 2013
    Publication date: December 17, 2015
    Applicants: Politecnico Di Milano, STMicroelectronics S.r.l.
    Inventors: Barbara Simoni, Claudia Comi, Alberto Corigliano
  • Publication number: 20140174183
    Abstract: A detection structure for a z-axis resonant accelerometer is provided with an inertial mass anchored to a substrate by means of elastic anchorage elements so as to be suspended above the substrate and perform an inertial movement of rotation about a first axis of rotation belonging to a plane of main extension of the inertial mass, in response to an external acceleration acting along a vertical axis transverse with respect to the plane; and a first resonator element and a second resonator element, which are mechanically coupled to the inertial mass by respective elastic supporting elements, which enable a movement of rotation about a second axis of rotation and a third axis of rotation, in a resonance condition. In particular, the second axis of rotation and the third axis of rotation are parallel to one another, and are moreover parallel to the first axis of rotation of the inertial mass.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Inventors: Claudia Comi, Alberto Corigliano, Sarah Zerbini
  • Publication number: 20140090469
    Abstract: An integrated detection structure has a first inertial mass and a second inertial mass, each of which is elastically anchored to a substrate and has a linear movement along a first horizontal axis, a first detection movement of rotation about a first axis of rotation parallel to a second horizontal axis and a second detection movement of translation along the second horizontal axis; driving electrodes cause linear movement of the inertial masses, in opposite directions of the first horizontal axis; a pair of flexural resonator elements and a pair of torsional resonator elements are elastically coupled to the inertial masses, the torsional resonator elements having a resonant movement of rotation about a second axis of rotation and a third axis of rotation, parallel to one another and to the first axis of rotation.
    Type: Application
    Filed: September 19, 2013
    Publication date: April 3, 2014
    Applicant: STMicroelectronics S.r.I.
    Inventors: Claudia Comi, Alberto Corigliano, Leonardo Baldasarre
  • Patent number: 8671756
    Abstract: A microelectromechanical detection structure for a MEMS resonant biaxial accelerometer is provided with: an inertial mass, anchored to a substrate by elastic elements to be suspended above the substrate. The elastic elements enabling inertial movements of the inertial mass along a first axis of detection and a second axis of detection that belong to a plane of main extension of said inertial mass, in response to respective linear external accelerations. At least one first resonant element and one second resonant element have a respective longitudinal extension, respectively along the first axis of detection and the second axis of detection, and are mechanically coupled to the inertial mass through a respective one of the elastic elements to undergo a respective axial stress when the inertial mass moves respectively along the first axis of detection and the second axis of detection.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: March 18, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Claudia Comi, Alberto Corigliano, Barbara Simoni
  • Patent number: 8516889
    Abstract: A MEMS resonant accelerometer is disclosed, having: a proof mass coupled to a first anchoring region via a first elastic element so as to be free to move along a sensing axis in response to an external acceleration; and a first resonant element mechanically coupled to the proof mass through the first elastic element so as to be subject to a first axial stress when the proof mass moves along the sensing axis and thus to a first variation of a resonant frequency. The MEMS resonant accelerometer is further provided with a second resonant element mechanically coupled to the proof mass through a second elastic element so as to be subject to a second axial stress when the proof mass moves along the sensing axis, substantially opposite to the first axial stress, and thus to a second variation of a resonant frequency, opposite to the first variation.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: August 27, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Barbara Simoni, Claudia Comi, Alberto Corigliano
  • Publication number: 20120132003
    Abstract: A microelectromechanical detection structure for a MEMS resonant biaxial accelerometer is provided with: an inertial mass, anchored to a substrate by elastic elements to be suspended above the substrate. The elastic elements enabling inertial movements of the inertial mass along a first axis of detection and a second axis of detection that belong to a plane of main extension of said inertial mass, in response to respective linear external accelerations. At least one first resonant element and one second resonant element have a respective longitudinal extension, respectively along the first axis of detection and the second axis of detection, and are mechanically coupled to the inertial mass through a respective one of the elastic elements to undergo a respective axial stress when the inertial mass moves respectively along the first axis of detection and the second axis of detection.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 31, 2012
    Applicants: STMicroelectronics S.r.l., Politecnico Di Milano
    Inventors: Claudia Comi, Alberto Corigliano, Barbara Simoni
  • Publication number: 20110056294
    Abstract: A MEMS resonant accelerometer is disclosed, having: a proof mass coupled to a first anchoring region via a first elastic element so as to be free to move along a sensing axis in response to an external acceleration; and a first resonant element mechanically coupled to the proof mass through the first elastic element so as to be subject to a first axial stress when the proof mass moves along the sensing axis and thus to a first variation of a resonant frequency. The MEMS resonant accelerometer is further provided with a second resonant element mechanically coupled to the proof mass through a second elastic element so as to be subject to a second axial stress when the proof mass moves along the sensing axis, substantially opposite to the first axial stress, and thus to a second variation of a resonant frequency, opposite to the first variation.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 10, 2011
    Applicants: STMicroelectronics S.r.I., Politecnico di Milano
    Inventors: Barbara Simoni, Claudia Comi, Alberto Corigliano