Patents by Inventor Claudio Laloni

Claudio Laloni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220157346
    Abstract: A method for the calibration of a camera for monitoring additive manufacturing of an object in which material is applied in a plurality of layers is provided. The method includes: a) providing the camera and providing means for additive manufacturing of the object, b) capturing an image of the object being manufactured or already manufactured by the camera, c) comparing the image captured with a model of the object, d) determining a calibration function on the basis of the comparison from step c), which is intended to transform the image captured into a corrected image, wherein the corrected image of the object substantially corresponds to the model of the object, and e) calibrating the camera by the calibration function. Also provided is a computer program comprising commands which, when executed by a computer, cause the computer to execute the steps of the method as well as a related apparatus.
    Type: Application
    Filed: March 26, 2020
    Publication date: May 19, 2022
    Inventors: Frank Forster, Andreas Graichen, Claudio Laloni, Clemens Otte
  • Patent number: 9778359
    Abstract: A method for the ultrasound check of a test object involves moving a test probe along a test probe surface and sending ultrasound impulses into the test object by the test probe. Respective echo signals corresponding with the emitted ultrasound impulses are received by the test probe. An image of a predetermined test region of the test object is prepared on the basis of an overlapping and averaging of amplitude values of the received echo signals by a data processing unit. The respective position of the test probe when sending the ultrasound signals and/or when receiving the corresponding echo signals is captured by a capturing unit. The respectively captured positions of the test probe are considered when creating the image of the test region of the test object.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: October 3, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Matthias Goldammer, Claudio Laloni, Hubert Mooshofer, Patrick Wissmann
  • Publication number: 20150362593
    Abstract: A method for the ultrasound check of a test object involves moving a test probe along a test probe surface and sending ultrasound impulses into the test object by the test probe. Respective echo signals corresponding with the emitted ultrasound impulses are received by the test probe. An image of a predetermined test region of the test object is prepared on the basis of an overlapping and averaging of amplitude values of the received echo signals by a data processing unit. The respective position of the test probe when sending the ultrasound signals and/or when receiving the corresponding echo signals is captured by a capturing unit. The respectively captured positions of the test probe are considered when creating the image of the test region of the test object.
    Type: Application
    Filed: January 13, 2014
    Publication date: December 17, 2015
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Matthias GOLDAMMER, Claudio LALONI, Hubert MOOSHOFER, Patrick Wissmann
  • Publication number: 20130297232
    Abstract: A method and device for performing the method of inspecting an object for the purpose of detecting defective surface regions of the object, comprising the steps of using a scanning device to survey a surface of the object to be inspected and generating two-dimensional image data and a measured surface profile in at least one cross-sectional plane through the object in each case; using a computer device to evaluate the two-dimensional image data in order to localize a potentially defective surface region; using the computer device to generate a calculated surface profile within the potentially defective surface region in the cross-sectional plane on the basis of the measured surface pro-file outside of the potentially defective surface region of the cross-sectional plane; using the computer device to compare the calculated and measured surface profiles within the potentially defective surface region, the localized surface region being assessed as actually defective if defined differentiating features are prese
    Type: Application
    Filed: January 16, 2012
    Publication date: November 7, 2013
    Inventors: Helmuth Euler, Frank Forster, Christian Homma, Claudio Laloni
  • Patent number: 7689003
    Abstract: An inspection apparatus (10) applying two dimensional nondestructive examination images onto a three dimensional solid model of a component (12) to display a virtual component (73) that may be manipulated to perform a nondestructive inspection. The two dimensional nondestructive examination images may be acquired from a plurality of views of the component in order to provide full coverage of the surface to be inspected, with appropriate stitching of images in regions of overlap between adjacent views. The two dimensional images (62) may be color or black and white photographs or ultraviolet or infrared images, for example. Multiple types of nondestructive examination images, results of inspection data evaluations, and design, operational and/or maintenance information may be displayed separately or jointly on the three dimensional solid model.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: March 30, 2010
    Assignee: Siemens Energy, Inc.
    Inventors: Robert E. Shannon, Clifford Hatcher, Claudio Laloni, Frank Forster, Fredrick M. Davis
  • Publication number: 20100060718
    Abstract: An optical measuring device for a three-dimensional measuring of a hollow space formed within an object is provided. The optical measurement device has a light source, which is provided for emitting illumination light along an illumination beam path, and an optical deflection element, which spatially structures the radiated illumination light such that on an inside wall an illumination line forms, which extends along the longitudinal axis. The shape of the line is dependant on the size and shape of the hollow space. Further, the optical measuring device has a camera, which detects the illumination line via an imaging beam path at a triangulation angle. Through an appropriate evaluation of the image of the detected shape and size of the illumination line by the camera, the three-dimensional shape of the hollow space is determined.
    Type: Application
    Filed: November 8, 2007
    Publication date: March 11, 2010
    Inventors: Frank Forster, Claudio Laloni, Gerhard Röhrlein, Anton Schick
  • Publication number: 20070217672
    Abstract: An inspection apparatus (10) applying two dimensional nondestructive examination images onto a three dimensional solid model of a component (12) to display a virtual component (73) that may be manipulated to perform a nondestructive inspection. The two dimensional nondestructive examination images may be acquired from a plurality of views of the component in order to provide full coverage of the surface to be inspected, with appropriate stitching of images in regions of overlap between adjacent views. The two dimensional images (62) may be color or black and white photographs or ultraviolet or infrared images, for example. Multiple types of nondestructive examination images, results of inspection data evaluations, and design, operational and/or maintenance information may be displayed separately or jointly on the three dimensional solid model.
    Type: Application
    Filed: June 19, 2006
    Publication date: September 20, 2007
    Inventors: Robert E. Shannon, Clifford Hatcher, Claudio Laloni, Frank Forster, Fredrick M. Davis
  • Patent number: 7230694
    Abstract: Method for determining an axle geometry by recording and evaluating a topographical image of a face (6) of a wheel (1) fitted to an axle (2), and a sensor (10) for execution of the method. The method includes projecting light with a coding onto an area on the face (6) of the wheel (1) from a projecting direction; recording the light reflected from the area on the face (6) of the wheel (1) with an image converter (8), from a direction other than the light projecting direction; determining three-dimensional surface coordinates for the topographical image of the face (6) of the wheel (1) from the recorded light; and evaluating the topographical image in relation to a reference system.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: June 12, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventors: Frank Forster, Lars Jahn, Claudio Laloni
  • Publication number: 20050030525
    Abstract: Method for determining an axle geometry by recording and evaluating a topographical image of a face (6) of a wheel (1) fitted to an axle (2), and a sensor (10) for execution of the method. The method includes projecting light with a coding onto an area on the face (6) of the wheel (1) from a projecting direction; recording the light reflected from the area on the face (6) of the wheel (1) with an image converter (8), from a direction other than the light projecting direction; determining three-dimensional surface coordinates for the topographical image of the face (6) of the wheel (1) from the recorded light; and evaluating the topographical image in relation to a reference system.
    Type: Application
    Filed: December 1, 2003
    Publication date: February 10, 2005
    Inventors: Frank Forster, Lars Jahn, Claudio Laloni