Patents by Inventor Claudio Pistidda

Claudio Pistidda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11524895
    Abstract: The present invention relates to a method for producing tetrahydridoborate salts with high efficiency at low cost. The method for the production of metal borohydride salts according to the present invention comprises the steps of providing an anhydrous metal borate salt and milling the anhydrous metal borate salt in the presence of a metal material based on magnesium or magnesium alloys in a hydrogen atmosphere at a temperature and for a time sufficient to produce the metal borohydride salt. In another embodiment of the invention, the method for the production of metal borohydride salts according to the present invention comprises the steps of providing an hydrated metal borate salt and milling the hydrated metal borate salt in the presence of a metal material based on magnesium or magnesium alloys in an inert gas atmosphere at a temperature and for a time sufficient to produce the metal borohydride salts.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: December 13, 2022
    Assignee: Helmholtz-Zentrum hereon GmbH
    Inventors: Claudio Pistidda, Thi Thu Le, Julián Puszkiel, Klaus Horst Taube, Martin Dornheim, Thomas Klassen
  • Publication number: 20200361769
    Abstract: The present invention relates to a method for producing tetrahydridoborate salts with high efficiency at low cost. The method for the production of metal borohydride salts according to the present invention comprises the steps of providing an anhydrous metal borate salt and milling the anhydrous metal borate salt in the presence of a metal material based on magnesium or magnesium alloys in a hydrogen atmosphere at a temperature and for a time sufficient to produce the metal borohydride salt. In another embodiment of the invention, the method for the production of metal borohydride salts according to the present invention comprises the steps of providing an hydrated metal borate salt and milling the hydrated metal borate salt in the presence of a metal material based on magnesium or magnesium alloys in an inert gas atmosphere at a temperature and for a time sufficient to produce the metal borohydride salts.
    Type: Application
    Filed: May 8, 2020
    Publication date: November 19, 2020
    Applicant: Helmholtz-Zentrum Geesthacht Zentrum für Material-und Küstenforschung GmbH
    Inventors: Claudio Pistidda, Thu Thu Le, Julián Puszkiel, Klaus Horst Taube, Martin Dornheim, Thomas Klassen
  • Patent number: 8815207
    Abstract: The present invention concerns a method of activating or regenerating a hydrogen storage material which contains at least one metal hydride. The at least one metal hydride is brought into contact with an inert solvent and the inert solvent is subsequently removed again. After contacting with and removal of the inert solvent, there is not only an increase in the reaction rate but surprisingly the hydrogenation also proceeds more completely. The present method is particularly advantageous when the hydrogen storage material contains at least components which interact with one another during absorption and desorption.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: August 26, 2014
    Assignee: GKSS-Forschungszentrum Geesthacht GmbH
    Inventors: Gagik Barkhordarian, Claudio Pistidda, Martin Dornheim, Rüdiger Bormann
  • Publication number: 20100160149
    Abstract: The present invention concerns a method of activating or regenerating a hydrogen storage material which contains at least one metal hydride. The at least one metal hydride is brought into contact with an inert solvent and the inert solvent is subsequently removed again. After contacting with and removal of the inert solvent, there is not only an increase in the reaction rate but surprisingly the hydrogenation also proceeds more completely. The present method is particularly advantageous when the hydrogen storage material contains at least components which interact with one another during absorption and desorption.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 24, 2010
    Applicant: GKSS-FORSCHUNGSZENTRUM GEESTHACHT GmbH
    Inventors: GAGIK BARKHORDARIAN, Claudio Pistidda, Martin Dornheim, Rüdiger Bormann