Patents by Inventor Claus Thybo

Claus Thybo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180171980
    Abstract: The present disclosure relates to a control system for a wind turbine that is configured to: obtain a 3-dimensional image of at least a portion of a wind turbine blade; recognise a target feature of the wind turbine blade in the obtained image and identify the position of the target feature; and monitor the state of the wind turbine blade and/or control operation of at least one blade in dependence on the identified position of the feature.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 21, 2018
    Inventors: Jacob Deleuran GRUNNET, Claus THYBO, Johnny NIELSEN, Jes RASMUSSEN
  • Patent number: 9822904
    Abstract: The invention relates to a valve having a balancing function for a fluid distribution system. A valve closing member is movable between a closed position and a fully opened position. An actuation device is provided for changing the position of the valve closing member. A control unit is provided and comprises an electronic memory adapted to receive and store an opening limitation value, said opening limitation value being representative of a selected intermediate position between said closed position and said fully opened position of the valve closing member, wherein the control unit controls the actuation device to limit the movement of the valve closing member to positions from said closed position to said selected intermediate position. The invention also relates to a valve system and to a method of operating a valve.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: November 21, 2017
    Assignee: IMI HYDRONIC ENGINEERING INTERNATIONAL SA
    Inventors: Claus Thybo, Anders Engelbrektsson, Daniel Jilderos
  • Publication number: 20170328493
    Abstract: A valve having a balancing function for a fluid distribution system. A valve closing member is movable between a closed position and a fully opened position. An actuation device is provided for changing the position of the valve closing member. A control unit is provided and includes an electronic memory adapted to receive and store an opening limitation value, the opening limitation value being representative of a selected intermediate position between the closed position and the fully opened position of the valve closing member, wherein the control unit controls the actuation device to limit the movement of the valve closing member to positions from the closed position to the selected intermediate position. Also, a valve system and to a method of operating a valve.
    Type: Application
    Filed: August 2, 2017
    Publication date: November 16, 2017
    Applicant: IMI HYDRONIC ENGINEERING INTERNATIONAL SA
    Inventors: Anders ENGELBREKTSSON, Daniel JILDEROS, Claus THYBO
  • Patent number: 9644874
    Abstract: A method for controlling a supply of refrigerant to an evaporator (5) of a vapor compression system (1), such as a refrigeration system, an air condition system or a heat pump, is disclosed. The vapor compression system (1) comprises an evaporator (5), a compressor (2), a condenser (3) and an expansion device (4) arranged in a refrigerant circuit. The method comprises the steps of: Actuating a component, such as an expansion valve (4), a fan or a compressor (2), of the vapor compression system (1) in such a manner that a dry zone in the evaporator (5) is changed; measuring a temperature signal representing a temperature of refrigerant leaving the evaporator (5); analyzing the measured temperature signal, e.g.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: May 9, 2017
    Assignee: Danfoss A/S
    Inventors: Roozbeh Izadi-Zamanabadi, Lars Finn Sloth Larsen, Claus Thybo
  • Publication number: 20160312916
    Abstract: The invention relates to a valve having a balancing function for a fluid distribution system. A valve closing member is movable between a closed position and a fully opened position. An actuation device is provided for changing the position of the valve closing member. A control unit is provided and comprises an electronic memory adapted to receive and store an opening limitation value, said opening limitation value being representative of a selected intermediate position between said closed position and said fully opened position of the valve closing member, wherein the control unit controls the actuation device to limit the movement of the valve closing member to positions from said closed position to said selected intermediate position. The invention also relates to a valve system and to a method of operating a valve.
    Type: Application
    Filed: December 17, 2014
    Publication date: October 27, 2016
    Applicant: IMI HYDRONIC ENGINEERING INTERNATIONAL SA
    Inventors: Claus THYBO, Anders ENGELBREKTSSON, Daniel JILDEROS
  • Publication number: 20160312913
    Abstract: The present invention relates to a valve having a control function and a method for controlling a valve in a fluid conduit in order to adapt flow rates and/or differential pressure rates. The valve comprises a fluid inlet and a fluid outlet and a valve closing member located inside a valve body. The valve closing member is operationally connected to a variable volume chamber, which is adapted to extract energy from the fluid in order to provide either an opening or a closing displacement of the valve closing member such that the degree of opening of the valve can be changed. The supply of fluid to and from the variable volume chambers may be regulated by electronically controlled valves.
    Type: Application
    Filed: December 17, 2014
    Publication date: October 27, 2016
    Applicant: IMI HYDRONIC ENGINEERING INTERNATIONAL SA
    Inventors: Claus THYBO, Slavko LAH, Gregor BOZIC, Peter VOLOVEC
  • Patent number: 9416999
    Abstract: A method for determining wire connections in a vapor compression system (1) is disclosed. The vapor compression system comprises a compressor, a condenser, an expansion device (2) and an evaporator (3) being fluidly interconnected in a refrigerant path, and two or more sensor devices (7, 8, 9, 10, 11) arranged for measuring variables which are relevant for the operation of the vapor compression system (1). The method comprises the steps of changing an operational setting, e.g. an opening degree of the expansion device (2) for the vapor compression system (1), monitoring variable values, such as temperatures, being measured by at least two sensor devices (7, 8, 9, 10, 11), e.g.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: August 16, 2016
    Assignee: Danfoss A/S
    Inventors: Roozbeh Izadi-Zamanabadi, Lars Finn Sloth Larsen, Claus Thybo
  • Patent number: 9303901
    Abstract: A method for controlling a vapor compression system, such as a refrigeration system, preferably an air condition system, comprising at least two evaporators. While monitoring a superheat (SH) at a common outlet for the evaporators, the amount of available refrigerant is controlled in response to the SH and in order to obtain an optimum SH value. The available refrigerant is distributed among the evaporators in accordance with a distribution key. The distribution key is preferably obtained while taking individual consideration to operating conditions for each of the evaporators into account. Thereby the vapor compression system can be operated in such a way that each of the evaporators is operated in an optimal manner, and in such a way that the system in general is operated in an optimal manner.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: April 5, 2016
    Assignee: Danfoss A/S
    Inventors: Claus Thybo, Rafael Wisniewski
  • Patent number: 9285035
    Abstract: A valve comprising an inlet opening adapted to receive fluid medium and at least two outlet openings, each being fluidly connected to a flow path being arranged fluidly in parallel, is disclosed. The valve comprises a first valve part (1) and a second valve part (3). The first valve part (1) has at least two flow passages (2) formed therein, each flow passage (2) being fluidly connected to one of the outlet openings. The second valve part (3) has at least one primary flow passage (4) and at least one secondary flow passage (5, 6, 7) formed therein, the primary flow passage(s) (4) and the secondary flow passage(s) (5, 6, 7) being fluidly connected to the inlet opening.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: March 15, 2016
    Assignee: Danfoss A/S
    Inventor: Claus Thybo
  • Patent number: 9263891
    Abstract: The present invention relates to a method and a system to reduce losses of energy due to ripples, especially at the power grid, the ripples being short term power shortages or excess power. The method is based on the idea of shutting off energy consuming devices during a period of power shortage, if their operation is not necessary, and optionally to turn on such energy consuming devices during periods of excess power, if energy may be stored in them, especially when energy may be stored as some physical parameter or variable, being a part of the operation of the energy consuming devices, such as the temperature of a freezer.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: February 16, 2016
    Assignee: Danfoss A/S
    Inventors: Helge Vandel Jensen, Claus Thybo, Leo Bram, Ejner Kobberoe
  • Publication number: 20160018142
    Abstract: An expansion valve (4) for a vapour compression system (1), and a vapour compression system comprising such an expansion valve (4) are disclosed. The expansion valve (4) comprises a first valve member (7) and a second valve member (8). The first valve member (7) and the second valve member (8) are arranged movably relative to each other, and the relative position of the first valve member (7) and the second valve member (8) determines an opening degree of the expansion valve (4). The first valve member (7) and/or the second valve member (8) is/are automatically movable in response to changes in a differential pressure across the expansion valve (4), the opening degree of the expansion valve (4) thereby being automatically altered in response to changes in the differential pressure across the expansion valve (4). It is ensured that the opening degree of the expansion valve is automatically adjusted to the actual operating conditions, thereby optimising the efficiency of the vapour compression system.
    Type: Application
    Filed: September 30, 2015
    Publication date: January 21, 2016
    Inventors: Claus Thybo, Jurgen Suss
  • Patent number: 9217591
    Abstract: A refrigeration system includes an expansion valve and a compressor, the expansion valve, the evaporator and the compressor being arranged in a refrigerant flow path having refrigerant flowing therein. A method for controlling a flow of refrigerant to an evaporator includes steps of increasing an opening degree of the expansion valve, thereby increasing a flow of refrigerant to the evaporator sufficiently to substantially eliminate a dry zone of the evaporator, decreasing the opening degree of the expansion valve, and repeating the steps of increasing and decreasing. This causes the superheat value of refrigerant leaving the evaporator to ‘toggle’ between a zero level and a low, but positive, level. Thereby the refrigeration capacity is utilized more efficiently. Additionally, sufficiently low amount of liquid refrigerant is allowed to pass through the evaporator to prevent damage to the compressor.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: December 22, 2015
    Assignee: Danfoss A/S
    Inventors: Lars Finn Sloth Larsen, Claus Thybo
  • Patent number: 9170039
    Abstract: An expansion valve for a vapor compression system comprises a first valve member and a second valve member. The first valve member and the second valve member are arranged movably relative to each other, and the relative position of the first valve member and the second valve member determines an opening degree of the expansion valve. The first valve member and/or the second valve member is/are automatically movable in response to changes in a differential pressure across the expansion valve, the opening degree of the expansion valve thereby being automatically altered in response to changes in the differential pressure across the expansion valve. It is ensured that the opening degree of the expansion valve is automatically adjusted to the actual operating conditions, thereby optimising the efficiency of the vapour compression system.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: October 27, 2015
    Assignee: Danfoss A/S
    Inventors: Claus Thybo, Jurgen Suss
  • Patent number: 9027847
    Abstract: A method of estimating a floor temperature of a solid floor that has a fluid conduit embedded in the floor. Provided is a control scheme that provides a sequence, where the concrete temperature can be estimated through the temperature of the fluid in the conduit embedded in the floor. After the concrete temperature is obtained, a heating sequence can be initiated for providing fast and accurate control of the floor temperature.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: May 12, 2015
    Assignee: Danfoss A/S
    Inventors: Lars Finn Sloth Larsen, Honglian Thybo, Claus Thybo
  • Patent number: 9003827
    Abstract: An expansion device unit (4) for a vapor compression system (1), and a vapor compression system (1) are disclosed. The expansion device unit (4) comprises an inlet opening (17) arranged to receive fluid medium, at least two outlet openings (18) arranged to deliver fluid medium, a main expanding section (6) adapted to expand fluid medium received via the inlet opening (17) before delivering the fluid medium to the outlet openings (18), and a distribution section (7) arranged to split the fluid flow received via the inlet opening (17) into at least two fluid flows to be delivered via the outlet openings (18). The main expanding section (6) and/or the distribution section (7) is/are arranged to cause pressures in fluid delivered via at least two of the outlet openings (18) to be distinct. The main expanding section (6) is operated on the basis of one or more parameters measured in the fluid flow delivered by one of the outlet openings (18).
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: April 14, 2015
    Assignee: Danfoss A/S
    Inventors: Claus Thybo, Lars Finn Sloth Larsen, Gunda Mader
  • Patent number: 8960213
    Abstract: A valve including a first valve part with at least one opening and a second valve part with at least one opening. The relative position of the openings of the first and second valve parts produces an overlapping area, which defines an opening degree of the valve. The first and second valve parts are adapted to perform relative movements from a position defining a maximum opening degree of the valve towards a position defining a minimum opening degree of the valve in such a manner that the velocity of the relative movement between the first valve part and the second valve part varies as a function of the overlapping area of the openings of the first and second valve parts. For example, the velocity may be decreased as the overlapping area decreases. Operating the valve in this manner reduces water hammering while ensuring appropriate operation and acceptable response times.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: February 24, 2015
    Assignee: Danfoss A/S
    Inventor: Claus Thybo
  • Patent number: 8827546
    Abstract: A method for calibrating a superheat sensor (5) for a refrigeration system is provided. The method comprises the following steps. Increasing an amount of liquid refrigerant in the evaporator (1), e.g. by increasing an opening degree of the expansion valve (3). Monitoring one or more parameters, e.g. the temperature of refrigerant leaving the evaporator (1), said parameters reflecting a superheat value of the refrigerant. Allowing the value of each of the parameter(s) to decrease. When the value(s) of the monitored parameter(s) reaches a substantially constant level, defining the superheat value corresponding to the constant level to be SH=0. The superheat sensor (5) is then calibrated in accordance with the defined SH=0 level. When the parameter(s) reaches the substantially constant level it is an indication that liquid refrigerant is allowed to pass through the evaporator (1), and thereby that the superheat of the refrigerant leaving the evaporator (1) is zero.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: September 9, 2014
    Assignee: Danfoss A/S
    Inventors: Asbjoern Leth Vonsild, Claus Thybo, Lars Finn Sloth Larsen, Jakob Spangberg, Jesper Hoeyer, Jes Vogler
  • Patent number: 8806879
    Abstract: A method of analyzing and controlling a refrigeration system (1) including at least one compressor (4), at least one condenser (5) and at least two refrigeration entities (2), each having at least one evaporator (9), includes preventing or reducing evaporator synchronization. Based on information received from the evaporator valve control units by a central control unit (9), it is determined whether or not two or more evaporators (9) are running in a synchronized manner and the refrigeration system (1) is controlled in order to desynchronize the evaporators (9) when two or more evaporators (9) are running in a synchronized manner.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: August 19, 2014
    Assignee: Danfoss A/S
    Inventors: Claus Thybo, Lars Finn Sloth Larsen
  • Patent number: 8783945
    Abstract: A superheat sensor (1) for sensing superheat of a fluid flowing in a flow channel (3) is disclosed. The sensor (1) comprises a flexible wall defining an interface between an inner cavity (5) having a charge fluid (6) arranged therein and the flow channel (3). The flexible wall is arranged in the flow channel (3) in thermal contact with the fluid flowing therein, and the flexible wall is adapted to conduct heat between the flow channel (3) and the inner cavity (5). Thereby the temperature of the charge fluid (6) adapts to the temperature of the fluid flowing in the flow channel (3), and the pressure in the inner cavity (5) is determined by this temperature. A first wall part (7, 14) and a second wall part (9, 16) are arranged at a variable distance from each other, said distance being defined by a differential pressure between the pressure of the charge fluid (6) and the pressure of the fluid flowing in the flow channel (3), i.e.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: July 22, 2014
    Assignee: Danfoss A/S
    Inventors: Asbjoern Leth Vonsild, Claus Thybo, Leo Bram, Jakob Spangberg
  • Patent number: 8769976
    Abstract: A method for controlling a refrigerant distribution in a vapour compression system, such as a refrigeration system, e.g. an air condition system, comprising at least two evaporators. The refrigerant distribution determines the distribution of the available amount of refrigerant among the evaporators. While monitoring a superheat, SH, at a common outlet for the evaporators, the distribution of refrigerant is modified in such a manner that a mass flow of refrigerant to a first evaporator is altered in a controlled manner. The impact on the monitored SH is then observed, and this is used for deriving information relating to the behaviour of the first evaporator, in the form of a control parameter. This is repeated for each evaporator, and the refrigerant distribution is adjusted on the basis of the control parameters. The impact may be in the form of a significant change in SH.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: July 8, 2014
    Assignee: Danfoss A/S
    Inventors: Claus Thybo, Rafael Wisniewski