Patents by Inventor Colin J McKinstrie

Colin J McKinstrie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8897649
    Abstract: In one embodiment, the optical transport system has an optical transmitter, an optical receiver, and one or more phase-sensitive amplifiers (PSAs) disposed within an optical link that connects the optical transmitter and receiver. The optical transmitter employs a first nonlinear optical process to generate a two-carrier signal in a manner that makes this signal suitable for phase-sensitive amplification. The PSAs employ a second nonlinear optical process to optically amplify the two-carrier signal in a phase-sensitive manner to counteract the attenuation imposed onto the two-carrier signal by lossy components of the optical link. The optical receiver employs a third nonlinear optical process in a manner that enables the receiver to beneficially use redundancies in the two-carrier signal, e.g., for an SNR gain.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: November 25, 2014
    Assignee: Alcatel Lucent
    Inventor: Colin J. McKinstrie
  • Publication number: 20130071113
    Abstract: In one embodiment, the optical transport system has an optical transmitter, an optical receiver, and one or more phase-sensitive amplifiers (PSAs) disposed within an optical link that connects the optical transmitter and receiver. The optical transmitter employs a first nonlinear optical process to generate a two-carrier signal in a manner that makes this signal suitable for phase-sensitive amplification. The PSAs employ a second nonlinear optical process to optically amplify the two-carrier signal in a phase-sensitive manner to counteract the attenuation imposed onto the two-carrier signal by lossy components of the optical link. The optical receiver employs a third nonlinear optical process in a manner that enables the receiver to beneficially use redundancies in the two-carrier signal, e.g., for an SNR gain.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: ALCATEL-LUCENT USA INC.
    Inventor: Colin J. McKinstrie
  • Patent number: 8032024
    Abstract: A method of multiple-band switching using a multi-pump fiber parametric switch is demonstrated. The switching architecture combines parametric band amplification, wavelength conversion and selective signal conjugation, enabled by temporal control of at least one pump of the multi-pump parametric device. The switching speed of the present invention is limited by the rise time of the controlled pump(s).
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: October 4, 2011
    Assignee: Alcatel Lucent
    Inventors: Joseph Carmine Centanni, Andrew Roman Chraplyvy, Alan H. Gnauck, Robert Meachem Jopson, Colin J. McKinstrie, Stojan Radic
  • Patent number: 7764423
    Abstract: A two-pump optical parametric device (OPD) having a nonlinear birefringent fiber, in which various four-wave mixing (FWM) processes can occur. The OPD applies, to the nonlinear birefringent fiber, two pump waves, each polarized at about 45 degrees with respect to a birefringence axis of the fiber, and a polarized input signal. A relevant FWM process couples the pump waves and the signal to cause the fiber to generate a desired output signal. In one configuration, the relevant FWM process is inverse modulational interaction, which causes the desired output signal to be generated through amplification or attenuation of the input signal. In another configuration, the relevant FWM process is phase conjugation, which causes the desired output signal to be generated through amplification of the input signal. In yet another configuration, the relevant FWM process is Bragg scattering, which causes the desired output signal to be generated as a corresponding idler signal.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: July 27, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Colin J. McKinstrie, Chongjin Xie
  • Publication number: 20100103505
    Abstract: A two-pump optical parametric device (OPD) having a nonlinear birefringent fiber, in which various four-wave mixing (FWM) processes can occur. The OPD applies, to the nonlinear birefringent fiber, two pump waves, each polarized at about 45 degrees with respect to a birefringence axis of the fiber, and a polarized input signal. A relevant FWM process couples the pump waves and the signal to cause the fiber to generate a desired output signal. In one configuration, the relevant FWM process is inverse modulational interaction, which causes the desired output signal to be generated through amplification or attenuation of the input signal. In another configuration, the relevant FWM process is phase conjugation, which causes the desired output signal to be generated through amplification of the input signal. In yet another configuration, the relevant FWM process is Bragg scattering, which causes the desired output signal to be generated as a corresponding idler signal.
    Type: Application
    Filed: October 28, 2008
    Publication date: April 29, 2010
    Applicant: LUCENT TECHNOLOGIES INC.
    Inventors: Colin J. McKinstrie, Chongjin Xie
  • Patent number: 7630126
    Abstract: Two-pump optical parametric devices (OPDs), and methods of operating the same, generate desired output signals and idlers having reduced stimulated Raman scattering (SRS) noise levels. When the two-pump OPD is used as a two-pump optical parametric amplifier (OPA), the pumps are polarized perpendicular to each other, and the lower-frequency sideband (signal or idler) is polarized parallel to the lower-frequency pump (perpendicular to the higher-frequency pump). The desired output may be an amplified signal or a generated idler. When the two-pump OPD is used as a two-pump optical frequency converter (OFC), the pumps can be polarized parallel to one another, in which case the signal and idler are both perpendicular to the pumps, or perpendicular to one another, in which case the lower-frequency sideband (signal or idler) is polarized parallel to the lower-frequency pump (perpendicular to the higher-frequency pump).
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: December 8, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Colin J. McKinstrie
  • Patent number: 7483203
    Abstract: A method of and device for generating an amplified optical signal directly in an optical fiber by way of phase-sensitive amplification based on one or more four-wave mixing (FWM) processes. In one embodiment, an input signal and two pump waves are applied to a highly nonlinear fiber (HNLF). The input signal is amplified in the HNLF due to energy transfer from the pump waves to the input signal via a degenerate phase-conjugation (PC) process. In another embodiment, an input signal and first and second pump waves are applied to a first HNLF to generate, via a Bragg scattering (BS) process, an idler signal corresponding to the input signal. The second pump wave is then filtered out and the first pump wave, a third pump wave, and the input and idler signals are applied to a second HNLF, where they interact via a non-degenerate PC process to produce an amplified output signal.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: January 27, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Colin J. McKinstrie
  • Patent number: 7436580
    Abstract: An optical buffer employing Bragg scattering (BS), in which two pump signals are combined with an input (data) signal in a four-wave mixing (FWM) medium to frequency convert the input signal into an idler signal, which is applied to a dispersive medium, in which the idler signal propagates at a speed different from that of the input signal. By selectively turning on and off a pump, e.g., at bit-level switching rates, the BS-based frequency conversion can be selectively performed on particular bits in the input signal, e.g., to generate an output signal having reordered bits. A BS-based optical buffer can (1) be tuned to achieve different amounts of delay; (2) support single-channel or multiple-channel, classical or quantal communications; (3) be implemented with co-phased pump-phase modulation to suppress stimulated Brillouin scattering, while inhibiting spectral broadening of the idler signal; and (4) provide polarization independence using standard polarization-diversity techniques.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: October 14, 2008
    Assignee: Lucent Technologies Inc
    Inventor: Colin J. McKinstrie
  • Publication number: 20080158656
    Abstract: An optical buffer employing Bragg scattering (BS), in which two pump signals are combined with an input (data) signal in a four-wave mixing (FWM) medium to frequency convert the input signal into an idler signal, which is applied to a dispersive medium, in which the idler signal propagates at a speed different from that of the input signal. By selectively turning on and off a pump, e.g., at bit-level switching rates, the BS-based frequency conversion can be selectively performed on particular bits in the input signal, e.g., to generate an output signal having reordered bits. A BS-based optical buffer can (1) be tuned to achieve different amounts of delay; (2) support single-channel or multiple-channel, classical or quantal communications; (3) be implemented with co-phased pump-phase modulation to suppress stimulated Brillouin scattering, while inhibiting spectral broadening of the idler signal; and (4) provide polarization independence using standard polarization-diversity techniques.
    Type: Application
    Filed: December 27, 2006
    Publication date: July 3, 2008
    Inventor: Colin J. McKinstrie
  • Publication number: 20080130097
    Abstract: Two-pump optical parametric devices (OPDs), and methods of operating the same, generate desired output signals and idlers having reduced stimulated Raman scattering (SRS) noise levels. When the two-pump OPD is used as a two-pump optical parametric amplifier (OPA), the pumps are polarized perpendicular to each other, and the lower-frequency sideband (signal or idler) is polarized parallel to the lower-frequency pump (perpendicular to the higher-frequency pump). The desired output may be an amplified signal or a generated idler. When the two-pump OPD is used as a two-pump optical frequency converter (OFC), the pumps can be polarized parallel to one another, in which case the signal and idler are both perpendicular to the pumps, or perpendicular to one another, in which case the lower-frequency sideband (signal or idler) is polarized parallel to the lower-frequency pump (perpendicular to the higher-frequency pump).
    Type: Application
    Filed: June 30, 2005
    Publication date: June 5, 2008
    Inventor: Colin J. McKinstrie
  • Patent number: 7324759
    Abstract: Method and apparatus for transmitting a light signal in an optical transmission system is described. In an example, an optical transmission link includes an input port and an output port. The optical transmission link is configured to propagate optical pulses from the input port to the output port. Information is encoded using phase relationships between adjacent ones of the optical pulses. A phase conjugator is disposed between the input port and the output port. The phase conjugator is positioned to reduce phase variance of the optical pulses at the output port.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: January 29, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Colin J. McKinstrie, Stojan Radic, Chongjin Xie
  • Patent number: 7304788
    Abstract: Optical frequency conversion by four-wave mixing in a fiber is considered. If the frequencies and polarizations of the waves are chosen judiciously, four-wave mixing enables the translation of individual and entangled states, without the noise pollution associated with parametric amplification (modulation instability or phase conjugation) and with reduced noise from stimulated Raman scattering.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: December 4, 2007
    Assignee: Lucent Technologies Inc.
    Inventor: Colin J. McKinstrie
  • Patent number: 7164526
    Abstract: An optical parametric amplifier (OPA) driven with at least two pump waves. The pump waves may be configured such that the OPA produces uniform exponential gain over a range of wavelengths that extends, for example, at least 30 nm on either side of the average pump-wave wavelength. In addition, since the Brillouin scattering limit applies to each pump wave independently, substantially twice the amount of energy may be pumped into an OPA of the present invention compared to that in the corresponding single pump-wave OPA of the prior art. An OPA of the present invention may be used in a WDM communication system and configured for simultaneous signal amplification and wavelength conversion.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: January 16, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Colin J. McKinstrie, Stoian Radic
  • Patent number: 7062176
    Abstract: A nonlinear phase-shift compensation method and apparatus is provided for improving system performance in optical transmission systems. The apparatus includes a phase-shift compensating device that provides a partial compensating phase shift to reduce the nonlinear phase noise resulting from self-phase modulation and amplified spontaneous emissions in an optical transmission system.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: June 13, 2006
    Assignee: Lucent Technologies Inc.
    Inventors: Xiang Liu, Colin J McKinstrie, Linn Frederick Mollenauer, Richart Elliott Slusher, Xing Wei, Chunhui Xu
  • Publication number: 20040264979
    Abstract: Method and apparatus for transmitting a light signal in an optical transmission system is described. In an example, an optical transmission link includes an input port and an output port. The optical transmission link is configured to propagate optical pulses from the input port to the output port. Information is encoded using phase relationships between adjacent ones of the optical pulses. A phase conjugator is disposed between the input port and the output port. The phase conjugator is positioned to reduce phase variance of the optical pulses at the output port.
    Type: Application
    Filed: June 30, 2003
    Publication date: December 30, 2004
    Applicant: LUCENT TECHNOLOGIES INC.
    Inventors: Colin J. McKinstrie, Stojan Radic, Chongjin Xie
  • Publication number: 20040125435
    Abstract: A nonlinear phase-shift compensation method and apparatus is provided for improving system performance in optical transmission systems. The apparatus includes a phase-shift compensating device that provides a partial compensating phase shift to reduce the nonlinear phase noise resulting from self-phase modulation and amplified spontaneous emissions in an optical transmission system.
    Type: Application
    Filed: December 30, 2002
    Publication date: July 1, 2004
    Inventors: Xiang Liu, Colin J. McKinstrie, Linn Frederick Mollenauer, Richart Elliott Slusher, Xing Wei, Chunhui Xu
  • Publication number: 20040042060
    Abstract: An optical parametric amplifier (OPA) driven with at least two pump waves. The pump waves may be configured such that the OPA produces uniform exponential gain over a range of wavelengths that extends, for example, at least 30 nm on either side of the average pump-wave wavelength. In addition, since the Brillouin scattering limit applies to each pump wave independently, substantially twice the amount of energy may be pumped into an OPA of the present invention compared to that in the corresponding single pump-wave OPA of the prior art. An OPA of the present invention may be used in a WDM communication system and configured for simultaneous signal amplification and wavelength conversion.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 4, 2004
    Inventors: Colin J. McKinstrie, Stojan Radic