Patents by Inventor Congshuo Zhao

Congshuo Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11371149
    Abstract: Provided is a nickel-based composite coating, method for producing the same and use thereof. A powder mixture is coated on the surface of a substrate to obtain a nickel-based composite coating, wherein the powder mixture comprises nickel-chromium-boron-silicon powders and barium titanate powders. The barium titanate powders are added to the nickel-based powders as a second phase to form BaTiO3—NiCrBSi metal-based ceramic composite coating. The nickel-based barium titanate composite coating has an excellent damping shock absorbing performance and gives the substrate strength as well. Comparing with the conventional coating materials, the coating obtained by the present disclosure through plasma cladding technique not only bonds with the substrate in a metallurgic way, but also has a small heat affected zone, specifically, an excellent damping shock absorbing performance.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: June 28, 2022
    Assignee: Academy of Armored Forces Engineering
    Inventors: Haidou Wang, Zhiguo Xing, Lihong Dong, Congshuo Zhao, Yuelan Di, Guozheng Ma
  • Publication number: 20190233948
    Abstract: Provided is a nickel-based composite coating, method for producing the same and use thereof. A powder mixture is coated on the surface of a substrate to obtain a nickel-based composite coating, wherein the powder mixture comprises nickel-chromium-boron-silicon powders and barium titanate powders. The barium titanate powders are added to the nickel-based powders as a second phase to form BaTiO3—NiCrBSi metal-based ceramic composite coating. The nickel-based barium titanate composite coating has an excellent damping shock absorbing performance and gives the substrate strength as well. Comparing with the conventional coating materials, the coating obtained by the present disclosure through plasma cladding technique not only bonds with the substrate in a metallurgic way, but also has a small heat affected zone, specifically, an excellent damping shock absorbing performance.
    Type: Application
    Filed: January 28, 2019
    Publication date: August 1, 2019
    Applicant: ACADEMY OF ARMORED FORCES ENGINEERING
    Inventors: Haidou Wang, Zhiguo Xing, Lihong Dong, Congshuo Zhao, Yuelan Di, Guozheng Ma