Patents by Inventor Corbin Church

Corbin Church has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220223094
    Abstract: A method and system for programming, calibrating and driving a light emitting device display, and for operating a display at a constant luminance even as some of the pixels in the display are degraded over time. The system may include extracting a time dependent parameter of a pixel for calibration. Each pixel in the display is configured to emit light when a voltage is supplied to the pixel's driving circuit, which causes a current to flow through a light emitting element. Degraded pixels are compensated by supplying their respective driving circuits with greater voltages. The display data is scaled by a compression factor less than one to reserve some voltage levels for compensating degraded pixels. As pixels become more degraded, and require additional compensation, the compression factor is decreased to reserve additional voltage levels for use in compensation.
    Type: Application
    Filed: January 24, 2022
    Publication date: July 14, 2022
    Inventors: Arokia Nathan, Gholamreza Chaji, Stefan Alexander, Peyman Servati, Richard I-Heng Huang, Corbin Church
  • Patent number: 11270621
    Abstract: A method and system for programming, calibrating and driving a light emitting device display, and for operating a display at a constant luminance even as some of the pixels in the display are degraded over time. The system may include extracting a time dependent parameter of a pixel for calibration. Each pixel in the display is configured to emit light when a voltage is supplied to the pixel's driving circuit, which causes a current to flow through a light emitting element. Degraded pixels are compensated by supplying their respective driving circuits with greater voltages. The display data is scaled by a compression factor less than one to reserve some voltage levels for compensating degraded pixels. As pixels become more degraded, and require additional compensation, the compression factor is decreased to reserve additional voltage levels for use in compensation.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: March 8, 2022
    Assignee: Ignis Innovation Inc.
    Inventors: Arokia Nathan, Gholamreza Chaji, Stefan Alexander, Peyman Servati, Richard I-Heng Huang, Corbin Church
  • Patent number: 11237667
    Abstract: An apparatus for combined capacitance and pressure sensing is described. The apparatus includes a multiplexer (75) having a plurality of inputs (76) and an output (F), a touch panel (29), and a front end module (3). The touch panel includes a layer structure (5; FIG. 15) comprising one or more layers, each extending perpendicularly to a thickness direction, the one or more layers including a layer of piezoelectric material (10; FIG. 15), the layer structure having first (6) and second (7; FIG. 15) opposite faces, and the layer(s) arranged between the first and second faces such that the thickness direction of each layer is perpendicular to the first and second faces. The touch panel also includes a plurality of first electrodes (8) disposed on the first face, each first electrode connected to a respective input of the multiplexer. The touch panel also includes at least one second electrode (9) disposed on the second face.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: February 1, 2022
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Arokia Nathan, Jackson Chi-Sun Lai, Corbin Church, Suk-Bae Cha
  • Publication number: 20200327845
    Abstract: A method and system for programming, calibrating and driving a light emitting device display, and for operating a display at a constant luminance even as some of the pixels in the display are degraded over time. The system may include extracting a time dependent parameter of a pixel for calibration. Each pixel in the display is configured to emit light when a voltage is supplied to the pixel's driving circuit, which causes a current to flow through a light emitting element. Degraded pixels are compensated by supplying their respective driving circuits with greater voltages. The display data is scaled by a compression factor less than one to reserve some voltage levels for compensating degraded pixels. As pixels become more degraded, and require additional compensation, the compression factor is decreased to reserve additional voltage levels for use in compensation.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 15, 2020
    Inventors: Arokia Nathan, Gholamreza Chaji, Stefan Alexander, Peyman Servati, Richard I-Heng Huang, Corbin Church
  • Patent number: 10699624
    Abstract: A method and system for programming, calibrating and driving a light emitting device display, and for operating a display at a constant luminance even as some of the pixels in the display are degraded over time. The system may include extracting a time dependent parameter of a pixel for calibration. Each pixel in the display is configured to emit light when a voltage is supplied to the pixel's driving circuit, which causes a current to flow through a light emitting element. Degraded pixels are compensated by supplying their respective driving circuits with greater voltages. The display data is scaled by a compression factor less than one to reserve some voltage levels for compensating degraded pixels. As pixels become more degraded, and require additional compensation, the compression factor is decreased to reserve additional voltage levels for use in compensation.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: June 30, 2020
    Assignee: Ignis Innovation Inc.
    Inventors: Arokia Nathan, Gholamreza Chaji, Stefan Alexander, Peyman Servati, Richard I-Heng Huang, Corbin Church
  • Patent number: 10496210
    Abstract: A pressure sensing architecture for use with liquid crystal (LC), organic light emitting diode (OLED), electrophoretic, or other similarly fabricated displays. The described architecture includes a bottom TFT structure and a top structure with color filter material, and with liquid crystal, electrophoretic or OLED material provided in between. A piezoelectric or equivalent material is provided within the display assembly. Transmitting and receiving electrodes can be used to electrically bias the piezoelectric or equivalent material, which provides an analog electrical signal in response to incident touch pressure.
    Type: Grant
    Filed: January 21, 2018
    Date of Patent: December 3, 2019
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Arokia Nathan, Jackson Chi-Sun Lai, Suk-Bae Cha, Corbin Church
  • Publication number: 20190253053
    Abstract: Integrated touch displays with combined pressure and projected capacitance touch capabilities are provided. A sensing electrode layer and, optionally, a driving electrode layer, has a plurality of discrete pads deposited, patterned, printed or laminated on a cover lens or color filter substrate. Each of the discrete pads may be formed of an optically transparent conductor.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Arokia Nathan, Jackson Chi-Sun Lai, Suk-Bae Cha, Corbin Church
  • Publication number: 20190243502
    Abstract: An apparatus for combined capacitance and pressure sensing is described. The apparatus includes a multiplexer (75) having a plurality of inputs (76) and an output (F), a touch panel (29), and a front end module (3). The touch panel includes a layer structure (5; FIG. 15) comprising one or more layers, each extending perpendicularly to a thickness direction, the one or more layers including a layer of piezoelectric material (10; FIG. 15), the layer structure having first (6) and second (7; FIG. 15) opposite faces, and the layer(s) arranged between the first and second faces such that the thickness direction of each layer is perpendicular to the first and second faces. The touch panel also includes a plurality of first electrodes (8) disposed on the first face, each first electrode connected to a respective input of the multiplexer. The touch panel also includes at least one second electrode (9) disposed on the second face.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: Arokia Nathan, Jackson Chi-Sun Lai, Corbin Church, Suk-Bae Cha
  • Publication number: 20190243503
    Abstract: An apparatus for combined capacitance and pressure sensing is described. The apparatus includes a multiplexer (75) having a plurality of inputs (76) and an output (F), a touch panel (29), and a front end module (3). The touch panel includes a layer structure (5; FIG. 15) comprising one or more layers, each extending perpendicularly to a thickness direction, the one or more layers including a layer of piezoelectric material (10; FIG. 15), the layer structure having first (6) and second (7; FIG. 15) opposite faces, and the layer(s) arranged between the first and second faces such that the thickness direction of each layer is perpendicular to the first and second faces. The touch panel also includes a plurality of first electrodes (8) disposed on the first face, each first electrode connected to a respective input of the multiplexer. The touch panel also includes at least one second electrode (9) disposed on the second face.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: Arokia Nathan, Jackson Chi-Sun Lai, Corbin Church, Suk-Bae Cha
  • Patent number: 10318038
    Abstract: An apparatus for combined capacitance and pressure sensing is described. The apparatus includes a multiplexer (75) having a plurality of inputs (76) and an output (F), a touch panel (29), and a front end module (3). The touch panel includes a layer structure (5; FIG. 15) comprising one or more layers, each extending perpendicularly to a thickness direction, the one or more layers including a layer of piezoelectric material (10; FIG. 15), the layer structure having first (6) and second (7; FIG. 15) opposite faces, and the layer(s) arranged between the first and second faces such that the thickness direction of each layer is perpendicular to the first and second faces. The touch panel also includes a plurality of first electrodes (8) disposed on the first face, each first electrode connected to a respective input of the multiplexer. The touch panel also includes at least one second electrode (9) disposed on the second face.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: June 11, 2019
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Arokia Nathan, Jackson Chi-Sun Lai, Suk-Bae Cha, Corbin Church
  • Patent number: 10310659
    Abstract: An apparatus for combined capacitance and pressure sensing is described. The apparatus includes a multiplexer (75) having a plurality of inputs (76) and an output (F), a touch panel (29), and a front end module (3). The touch panel includes a layer structure (5; FIG. 15) comprising one or more layers, each extending perpendicularly to a thickness direction, the one or more layers including a layer of piezoelectric material (10; FIG. 15), the layer structure having first (6) and second (7; FIG. 15) opposite faces, and the layer(s) arranged between the first and second faces such that the thickness direction of each layer is perpendicular to the first and second faces. The touch panel also includes a plurality of first electrodes (8) disposed on the first face, each first electrode connected to a respective input of the multiplexer. The touch panel also includes at least one second electrode (9) disposed on the second face.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 4, 2019
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Arokia Nathan, Jackson Chi-Sun Lai, Suk-Bae Cha, Corbin Church
  • Patent number: 10235933
    Abstract: A display degradation compensation system and method for adjusting the operating conditions for pixels in an OLED display to compensate for non-uniformity or aging of the display. The system or method sets an initial value for at least one of peak luminance and an operating condition, calculates compensation values for the pixels in the display, determines the number of pixels having compensation values larger than a predetermined threshold compensation value, and if the determined number of pixels having compensation values larger than said predetermined threshold value is greater than a predetermined threshold number, adjusts the set value until said determined number of pixels is less than said predetermined threshold number.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: March 19, 2019
    Assignee: Ignis Innovation Inc.
    Inventors: Arokia Nathan, Gholamreza Chaji, Stefan Alexander, Peyman Servati, Richard I-Heng Huang, Corbin Church
  • Patent number: 10169743
    Abstract: There is provided a system for managing maintenance of a plurality of resources. The system may comprise a computerized maintenance management system configured to track maintenance activities of users across at least two clients. The system may also extract data representing performance or other trends. The system may also enable users to upload information, extract an information set from the uploaded information, generate one or more messages based on the information set, and transmit the messages to clients.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: January 1, 2019
    Assignee: FIIX INC.
    Inventors: Marc F. Castel, Corbin Church
  • Patent number: 10126807
    Abstract: Switching of power modes for touch screens is disclosed. In example embodiments a touch detect mode may be activated for touchscreen operation. The touchscreen may be a projected capacitance screen that includes force sensing based on piezo electric sensors. The touch detect mode may be a low power mode in which at least one channel, but fewer than all channels of the touch screen are monitored. When is determined that a touch event has occurred a switch to a scan mode for touchscreen operation may be performed. Scan mode may be a higher power mode in which all channels of the touch screen are scanned at least for position sensing. The touch detect mode monitoring may be implemented by monitoring the total charge on the at least one channel and providing a voltage signal. When the voltage signal meets predetermined criteria an indication of a touch event may be generated.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: November 13, 2018
    Assignee: Cambridge Touch Technologies Ltd.
    Inventors: Arokia Nathan, Jackson Chi-Sun Lai, Suk-Bae Cha, Corbin Church
  • Publication number: 20180301077
    Abstract: A method and system for programming, calibrating and driving a light emitting device display, and for operating a display at a constant luminance even as some of the pixels in the display are degraded over time. The system may include extracting a time dependent parameter of a pixel for calibration. Each pixel in the display is configured to emit light when a voltage is supplied to the pixel's driving circuit, which causes a current to flow through a light emitting element. Degraded pixels are compensated by supplying their respective driving circuits with greater voltages. The display data is scaled by a compression factor less than one to reserve some voltage levels for compensating degraded pixels. As pixels become more degraded, and require additional compensation, the compression factor is decreased to reserve additional voltage levels for use in compensation.
    Type: Application
    Filed: June 11, 2018
    Publication date: October 18, 2018
    Inventors: Arokia Nathan, Gholamreza Chaji, Stefan Alexander, Peyman Servati, Richard I-Heng Huang, Corbin Church
  • Publication number: 20180224994
    Abstract: A pressure sensing architecture for use with liquid crystal (LC), organic light emitting diode (OLED), electrophoretic, or other similarly fabricated displays. The described architecture includes a bottom TFT structure and a top structure with color filter material, and with liquid crystal, electrophoretic or OLED material provided in between. A piezoelectric or equivalent material is provided within the display assembly. Transmitting and receiving electrodes can be used to electrically bias the piezoelectric or equivalent material, which provides an analog electrical signal in response to incident touch pressure.
    Type: Application
    Filed: March 30, 2018
    Publication date: August 9, 2018
    Inventors: Arokia Nathan, Jackson Chi-Sun Lai, Suk-Bae Cha, Corbin Church
  • Patent number: 10013907
    Abstract: A method and system for programming, calibrating and driving a light emitting device display, and for operating a display at a constant luminance even as some of the pixels in the display are degraded over time. The system may include extracting a time dependent parameter of a pixel for calibration. Each pixel in the display is configured to emit light when a voltage is supplied to the pixel's driving circuit, which causes a current to flow through a light emitting element. Degraded pixels are compensated by supplying their respective driving circuits with greater voltages. The display data is scaled by a compression factor less than one to reserve some voltage levels for compensating degraded pixels. As pixels become more degraded, and require additional compensation, the compression factor is decreased to reserve additional voltage levels for use in compensation.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: July 3, 2018
    Assignee: Ignis Innovation Inc.
    Inventors: Arokia Nathan, Gholamreza Chaji, Stefan Alexander, Peyman Servati, Richard I-Heng Huang, Corbin Church
  • Patent number: 10012678
    Abstract: A method and system for programming, calibrating and driving a light emitting device display, and for operating a display at a constant luminance even as some of the pixels in the display are degraded over time. The system may include extracting a time dependent parameter of a pixel for calibration. Each pixel in the display is configured to emit light when a voltage is supplied to the pixel's driving circuit, which causes a current to flow through a light emitting element. Degraded pixels are compensated by supplying their respective driving circuits with greater voltages. The display data is scaled by a compression factor less than one to reserve some voltage levels for compensating degraded pixels. As pixels become more degraded, and require additional compensation, the compression factor is decreased to reserve additional voltage levels for use in compensation.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: July 3, 2018
    Assignee: Ignis Innovation Inc.
    Inventors: Arokia Nathan, Gholamreza Chaji, Stefan Alexander, Peyman Servati, Richard I-Heng Huang, Corbin Church
  • Publication number: 20180143725
    Abstract: A pressure sensing architecture for use with liquid crystal (LC), organic light emitting diode (OLED), electrophoretic, or other similarly fabricated displays. The described architecture includes a bottom TFT structure and a top structure with color filter material, and with liquid crystal, electrophoretic or OLED material provided in between. A piezoelectric or equivalent material is provided within the display assembly. Transmitting and receiving electrodes can be used to electrically bias the piezoelectric or equivalent material, which provides an analog electrical signal in response to incident touch pressure.
    Type: Application
    Filed: January 21, 2018
    Publication date: May 24, 2018
    Inventors: Arokia Nathan, Jackson Chi-Sun Lai, Suk-Bae Cha, Corbin Church
  • Publication number: 20170371470
    Abstract: An apparatus for combined capacitance and pressure sensing is described. The apparatus includes a multiplexer (75) having a plurality of inputs (76) and an output (F), a touch panel (29), and a front end module (3). The touch panel includes a layer structure (5; FIG. 15) comprising one or more layers, each extending perpendicularly to a thickness direction, the one or more layers including a layer of piezoelectric material (10; FIG. 15), the layer structure having first (6) and second (7; FIG. 15) opposite faces, and the layer(s) arranged between the first and second faces such that the thickness direction of each layer is perpendicular to the first and second faces. The touch panel also includes a plurality of first electrodes (8) disposed on the first face, each first electrode connected to a respective input of the multiplexer. The touch panel also includes at least one second electrode (9) disposed on the second face.
    Type: Application
    Filed: December 23, 2015
    Publication date: December 28, 2017
    Inventors: Arokia Nathan, Jackson Chi-Sun Lai, Suk-Bae Cha, Corbin Church