Patents by Inventor Craig B. Arnold

Craig B. Arnold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220409826
    Abstract: Systems and methods for automatic intravenous injection in accordance with embodiments of the invention are illustrated. One embodiment includes a method for automatically injecting a needle into a vein. The method includes steps for identifying an injection position using a first set of one or more sensors, positioning an injection mechanism at the identified injection position, and vertically inserting a needle until entry in a vein is detected using a second set of one or more sensors.
    Type: Application
    Filed: November 19, 2020
    Publication date: December 29, 2022
    Applicants: The Trustees of Princeton University, Invictis Labs, Inc.
    Inventors: Craig B. Arnold, Miles Cole
  • Publication number: 20220348507
    Abstract: Ultra-lightweight aerogels and methods for fabricating such aerogels from ammonia borane and a support structure, where the support structure is either two-dimensional nanostructures, or hydrocarbon polymer colloids. The components are mixed, then annealed. The properties of the disclosed aerogels can be tuned by controlling the ratio between the support structure and the ammonia borane, or by infiltrating the aerogels with additives.
    Type: Application
    Filed: January 20, 2021
    Publication date: November 3, 2022
    Applicants: The Trustees Princeton University, Lutai
    Inventors: Rodney D. PRIESTLEY, Craig B. ARNOLD, Hejun LI, Sehmus OZDEN
  • Publication number: 20210228819
    Abstract: Disclosed is a portable medical device that can automatically sense the location of a vein and inject a needle to precisely pierce the vein without damaging surrounding tissue. The disclosed device does not require additional assistance for a person to use it on oneself. The disclosed device may optionally employ a basic arm cuff style, and can be used, inter alia, in hospital, military, home infusion, infusion treatment center, emergency response, school, or disaster relief settings.
    Type: Application
    Filed: May 6, 2019
    Publication date: July 29, 2021
    Applicant: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Miles Joseph Cole, Craig B. Arnold
  • Patent number: 10680293
    Abstract: Mechanical energy harvesting is an increasingly important method of providing power to distributed sensor networks where physical connection to a power source is impractical. Conventional methods use vibrations to actuate a piezoelectric element, coil/magnet assembly, or capacitor plates, thereby generating an electric current. The low charge-density of these devices excludes their application in low frequency and static load sources, with the lowest frequency reported devices limited to 10 Hz. These frequency limitations can be overcome by exploiting the piezoelectrochemical effect, a similar but physically distinct effect from the piezoelectric effect whereby an applied mechanical load alters the thermodynamics of an electrochemical reaction to produce a voltage/current. Piezoelectrochemical energy harvesters are expected to produce orders of magnitude more energy per load cycle than piezoelectrics and comparable power capabilities.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: June 9, 2020
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Craig B. Arnold, John Cannarella
  • Patent number: 9983459
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: May 29, 2018
    Inventor: Craig B. Arnold
  • Patent number: 9946081
    Abstract: An apparatus, system and method for microscopy. The apparatus, system and method includes a stage configured to receive an item; a tunable acoustic gradient index of refraction (TAG) lens having a first aspect positioned to image the received item, wherein the first aspect of the TAG lens is configured to have an optical power profile in accordance with an operational frequency of the TAG lens; one or more lenses configured to magnify an image of the received item at a viewing point; and at least one pulsed light source configured to illuminate the received item and to pulse at one or more points within the optical power profile of the TAG lens.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: April 17, 2018
    Inventor: Craig B. Arnold
  • Publication number: 20170329201
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Application
    Filed: December 28, 2016
    Publication date: November 16, 2017
    Inventor: Craig B. Arnold
  • Patent number: 9594288
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: March 14, 2017
    Inventors: Craig B. Arnold, Euan McLeod, Alexandre Mermillod-Blondin
  • Patent number: 9588186
    Abstract: A battery management system for use with a battery under test is disclosed. The system includes a container configured to hold the battery. The system also includes a stress/strain sensor. The container is configured to hold the battery in fixed relationship with respect to the stress/strain sensor. A processor is coupled to the stress/strain sensor, the processor being configured to measure the stress/strain on the battery and determine the state of health (SOH) of the battery based on the measured stress/strain and previously stored SOH relationship data for the battery. The processor may be configured to determine a state of charge (SOC) of the battery based on the measured stress/strain, the SOH of the battery and previously stored SOC relationship data for the battery.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: March 7, 2017
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Craig B. Arnold, John Cannarella
  • Publication number: 20170052425
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Application
    Filed: May 26, 2016
    Publication date: February 23, 2017
    Inventor: Craig B. Arnold
  • Publication number: 20160357087
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Application
    Filed: July 11, 2016
    Publication date: December 8, 2016
    Inventors: Craig B. Arnold, Euan McLeod, Alexandre Mermillod-Blondin
  • Publication number: 20160315358
    Abstract: Mechanical energy harvesting is an increasingly important method of providing power to distributed sensor networks where physical connection to a power source is impractical. Conventional methods use vibrations to actuate a piezoelectric element, coil/magnet assembly, or capacitor plates, thereby generating an electric current. The low charge-density of these devices excludes their application in low frequency and static load sources, with the lowest frequency reported devices limited to 10 Hz. These frequency limitations can be overcome by exploiting the piezoelectrochemical effect, a similar but physically distinct effect from the piezoelectric effect whereby an applied mechanical load alters the thermodynamics of an electrochemical reaction to produce a voltage/current. Piezoelectrochemical energy harvesters are expected to produce orders of magnitude more energy per load cycle than piezoelectrics and comparable power capabilities.
    Type: Application
    Filed: April 27, 2016
    Publication date: October 27, 2016
    Applicant: The Trustees of Princeton University
    Inventors: Craig B. Arnold, John Cannarella
  • Publication number: 20160313580
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Application
    Filed: April 27, 2015
    Publication date: October 27, 2016
    Inventors: Craig B. Arnold, Euan McLeod, Alexandre Mermillod-Blondin
  • Publication number: 20160266392
    Abstract: An apparatus, system and method for microscopy. The apparatus, system and method includes a stage configured to receive an item; a tunable acoustic gradient index of refraction (TAG) lens having a first aspect positioned to image the received item, wherein the first aspect of the TAG lens is configured to have an optical power profile in accordance with an operational frequency of the TAG lens; one or more lenses configured to magnify an image of the received item at a viewing point; and at least one pulsed light source configured to illuminate the received item and to pulse at one or more points within the optical power profile of the TAG lens.
    Type: Application
    Filed: December 15, 2015
    Publication date: September 15, 2016
    Inventor: Craig B. Arnold
  • Patent number: 9389343
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: July 12, 2016
    Inventors: Craig B. Arnold, Euan McLeod, Alexandre Mermillod-Blondin
  • Patent number: 9256009
    Abstract: A microscope, comprising a stage onto which is placed an item, a lens having a tunable acoustic gradient index of refraction (TAG lens) sufficiently proximate to said stage to magnify an image of the item, a viewing point for providing for viewing of the magnified image, and a pulsed illuminator capable of illuminating the stage and synchronously pulsed with an operating frequency of the TAG lens.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: February 9, 2016
    Assignee: TAG OPTICS INC.
    Inventors: Christian Theriault, Craig B. Arnold
  • Publication number: 20160025903
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Application
    Filed: April 27, 2015
    Publication date: January 28, 2016
    Inventor: Craig B. Arnold
  • Patent number: 9213175
    Abstract: An apparatus, system and method for microscopy. The apparatus, system and method includes a stage configured to receive an item; a tunable acoustic gradient index of refraction (TAG) lens having a first aspect positioned to image the received item, wherein the first aspect of the TAG lens is configured to have an optical power profile in accordance with an operational frequency of the TAG lens; one or more lenses configured to magnify an image of the received item at a viewing point; and at least one pulsed light source configured to illuminate the received item and to pulse at one or more points within the optical power profile of the TAG lens.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: December 15, 2015
    Inventor: Craig B. Arnold
  • Publication number: 20150301428
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Application
    Filed: October 6, 2014
    Publication date: October 22, 2015
    Inventors: Craig B. Arnold, Euan McLeod, Alexandre Mermillod-Blondin
  • Publication number: 20150177592
    Abstract: A tunable acoustic gradient index of refraction (TAG) lens and system are provided that permit, in one aspect, dynamic selection of the lens output, including dynamic focusing and imaging. The system may include a TAG lens and at least one of a source and a detector of electromagnetic radiation. A controller may be provided in electrical communication with the lens and at least one of the source and detector and may be configured to provide a driving signal to control the index of refraction and to provide a synchronizing signal to time at least one of the source and the detector relative to the driving signal. Thus, the controller is able to specify that the source irradiates the lens (or detector detects the lens output) when a desired refractive index distribution is present within the lens, e.g. when a desired lens output is present.
    Type: Application
    Filed: December 23, 2014
    Publication date: June 25, 2015
    Inventors: Craig B. Arnold, Euan McLeod, Alexandre Mermillod-Blondin