Patents by Inventor Craig E. Mar

Craig E. Mar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240123240
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element to engage tissue and one or more backstop elements to resist back-out from the tissue, is described. The fixation element can be mounted on a housing of the biostimulator such that a helix of the fixation element extends distally to a leading point. The leading point can be located on a distal face of the helix at a position that is proximal from a center of the distal face. The backstop elements can include non-metallic filaments, such as sutures, or can include a pinch point of the biostimulator. The backstop features can grip the tissue to prevent unscrewing of the fixation element. Other embodiments are also described and claimed.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 18, 2024
    Inventors: Craig E. Mar, Thomas B. Eby, Paul Paspa, Sondra Orts, Matthew G. Fishler, Stephen Lee, Carl Lance Boling, Thomas Robert Luhrs
  • Patent number: 11850435
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element to engage tissue and one or more backstop elements to resist back-out from the tissue, is described. The fixation element can be mounted on a housing of the biostimulator such that a helix of the fixation element extends distally to a leading point. The leading point can be located on a distal face of the helix at a position that is proximal from a center of the distal face. The backstop elements can include non-metallic filaments, such as sutures, or can include a pinch point of the biostimulator. The backstop features can grip the tissue to prevent unscrewing of the fixation element. Other embodiments are also described and claimed.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: December 26, 2023
    Assignee: PACESETTER, INC.
    Inventors: Craig E. Mar, Thomas B. Eby, Paul Paspa, Sondra Orts, Matthew G. Fishler, Stephen Lee, Carl Lance Boling, Thomas Robert Luhrs
  • Publication number: 20230158315
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element that can be locked to a helix mount, is described. The fixation element includes a fastener that engages a keeper of the helix mount. When engaged with the keeper, the fastener locks the fixation element to the helix mount. Accordingly, the fixation element does not move relative to the helix mount when the biostimulator is delivered into a target tissue. Other embodiments are also described and claimed.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 25, 2023
    Inventor: Craig E. Mar
  • Publication number: 20230158316
    Abstract: A leadless biostimulator, such as a leadless pacemaker, includes a housing sized and configured to be implanted within a heart of a patient and includes both primary and secondary fixation features. The primary fixation feature is adapted to rotate to fix the leadless biostimulator to a wall of the heart during initial implantation. Once the leadless biostimulator is implanted, the secondary fixation feature is adapted to resist counter-rotation of the leadless biostimulator. The primary fixation feature may include a fixation helix configured to affix the housing to the heart by rotating in a screwing direction. The secondary fixation feature may include an apex to engage the heart to resist unscrewing of the primary fixation feature.
    Type: Application
    Filed: January 12, 2023
    Publication date: May 25, 2023
    Inventors: Thomas B. Eby, Christopher R. Jenney, Craig E. Mar, Paul M. Paspa
  • Patent number: 11577086
    Abstract: A leafless biostimulator, such as a leadless pacemaker, includes a housing sized and configured to be implanted within a heart of a patient and includes both primary and secondary fixation features. The primary fixation feature is adapted to rotate to fix the leadless biostimulator to a wall of the heart during initial implantation. Once the leadless biostimulator is implanted, the secondary fixation feature is adapted to resist counter-rotation of the leadless biostimulator. The primary fixation feature may include a fixation helix configured to affix the housing to the heart by rotating in a screwing direction. The secondary fixation feature may include an apex to engage the heart to resist unscrewing of the primary fixation feature.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: February 14, 2023
    Assignee: PACESETTER, INC.
    Inventors: Thomas B. Eby, Christopher R. Jenney, Craig E. Mar, Paul M. Paspa
  • Patent number: 11565119
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element that can be locked to a helix mount, is described. The fixation element includes a fastener that engages a keeper of the helix mount. When engaged with the keeper, the fastener locks the fixation element to the helix mount. Accordingly, the fixation element does not move relative to the helix mount when the biostimulator is delivered into a target tissue. Other embodiments are also described and claimed.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: January 31, 2023
    Assignee: PACESETTER, INC.
    Inventor: Craig E. Mar
  • Publication number: 20220047877
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element to engage tissue and one or more backstop elements to resist back-out from the tissue, is described. The fixation element can be mounted on a housing of the biostimulator such that a helix of the fixation element extends distally to a leading point. The leading point can be located on a distal face of the helix at a position that is proximal from a center of the distal face. The backstop elements can include non-metallic filaments, such as sutures, or can include a pinch point of the biostimulator. The backstop features can grip the tissue to prevent unscrewing of the fixation element. Other embodiments are also described and claimed.
    Type: Application
    Filed: October 28, 2021
    Publication date: February 17, 2022
    Inventors: Craig E. Mar, Thomas B. Eby, Paul Paspa, Sondra Orts, Matthew G. Fishler, Stephen Lee, Carl Lance Boling, Thomas Robert Luhrs
  • Publication number: 20220023646
    Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
    Type: Application
    Filed: October 4, 2021
    Publication date: January 27, 2022
    Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
  • Patent number: 11185704
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element to engage tissue and one or more backstop elements to resist back-out from the tissue, is described. The fixation element can be mounted on a housing of the biostimulator such that a helix of the fixation element extends distally to a leading point. The leading point can be located on a distal face of the helix at a position that is proximal from a center of the distal face. The backstop elements can include non-metallic filaments, such as sutures, or can include a pinch point of the biostimulator. The backstop features can grip the tissue to prevent unscrewing of the fixation element. Other embodiments are also described and claimed.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: November 30, 2021
    Assignee: PACESETTER, INC.
    Inventors: Craig E. Mar, Thomas B. Eby, Paul Paspa, Sondra Orts, Matthew G. Fishler, Stephen Lee, Carl Lance Boling, Thomas Robert Luhrs
  • Patent number: 11141597
    Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: October 12, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
  • Publication number: 20210260389
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, having a patch antenna integrated into a housing, is described. The housing includes an annular wall that contains electronic circuitry of the biostimulator and provides a ground plane of the antenna. The patch antenna includes a meandering trace embedded in a curved dielectric layer that is mounted on the annular wall. The trace provides a conductor of the antenna and the dielectric layer provides a dielectric substrate of the antenna between the conductor and the ground plane. The electronic circuitry contained within the annular wall is electrically connected to the trace via an electrical feedthrough that passes through the annular wall and the dielectric layer. The electrical feedthrough places the electronic circuitry in communication with the antenna to transmit or receive wireless communication signals from an external device. Other embodiments are also described and claimed.
    Type: Application
    Filed: February 22, 2021
    Publication date: August 26, 2021
    Inventors: Souvik Dubey, Perry Li, Craig E. Mar
  • Publication number: 20200254269
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element that can be locked to a helix mount, is described. The fixation element includes a fastener that engages a keeper of the helix mount. When engaged with the keeper, the fastener locks the fixation element to the helix mount. Accordingly, the fixation element does not move relative to the helix mount when the biostimulator is delivered into a target tissue. Other embodiments are also described and claimed.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 13, 2020
    Inventor: Craig E. Mar
  • Publication number: 20200054883
    Abstract: A leafless biostimulator, such as a leadless pacemaker, includes a housing sized and configured to be implanted within a heart of a patient and includes both primary and secondary fixation features. The primary fixation feature is adapted to rotate to fix the leadless biostimulator to a wall of the heart during initial implantation. Once the leadless biostimulator is implanted, the secondary fixation feature is adapted to resist counter-rotation of the leadless biostimulator. The primary fixation feature may include a fixation helix configured to affix the housing to the heart by rotating in a screwing direction. The secondary fixation feature may include an apex to engage the heart to resist unscrewing of the primary fixation feature.
    Type: Application
    Filed: August 14, 2019
    Publication date: February 20, 2020
    Inventors: Thomas B. Eby, Christopher R. Jenney, Craig E. Mar, Paul M. Paspa
  • Publication number: 20190275340
    Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 12, 2019
    Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
  • Publication number: 20190134413
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including a fixation element to engage tissue and one or more backstop elements to resist back-out from the tissue, is described. The fixation element can be mounted on a housing of the biostimulator such that a helix of the fixation element extends distally to a leading point. The leading point can be located on a distal face of the helix at a position that is proximal from a center of the distal face. The backstop elements can include non-metallic filaments, such as sutures, or can include a pinch point of the biostimulator. The backstop features can grip the tissue to prevent unscrewing of the fixation element. Other embodiments are also described and claimed.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 9, 2019
    Inventors: Craig E. Mar, Thomas B. Eby, Paul Paspa, Sondra Orts, Matthew G. Fishler, Stephen Lee, Carl Lance Boling, Thomas Robert Luhrs
  • Patent number: 5746616
    Abstract: A method for electrically attaching electrode wire to a conductor in a defibrillation lead is disclosed. The method comprises melting the end of the wire with a hydrogen torch to form a ball of metal, then crimping or welding the ball to the conductor or to a joining piece attached to the conductor. Also, a hydrogen torch (water welder) may be used to join two or more electrode wires to each other.
    Type: Grant
    Filed: November 7, 1995
    Date of Patent: May 5, 1998
    Assignee: Pacesetter, Inc.
    Inventor: Craig E. Mar
  • Patent number: 5674272
    Abstract: The present invention is directed toward providing a composite lead body design for pacing and defibrillation leads. This lead body design improves the lead crush resistance in the lead segment that is implanted in the patient's clavicular region, while maintaining good fatigue resistance in the lead segment implanted in the heart. The clavicular segment has a generally flat profile. By flattening the clavicular segment proximal to the venous entry site, the lead will have a lower profile. Also, by substantially co-aligning the conductors within the clavicular segment, the crush resistance of the lead is significantly improved.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: October 7, 1997
    Assignee: Ventritex, Inc.
    Inventors: M. Elizabeth Bush, Craig E. Mar, Peter A. Altman, Paul M. Paspa
  • Patent number: 5542173
    Abstract: An implantable defibrillator lead comprises a flexible core onto which is wound helically wound coils to form an electrode. These electrode coils are partially encapsulated by a flexible matrix which holds them in their wrapped position around the core. Due to its coiled coil structure, this electrode provides improved flexibility, and can be used endocardially, intravascularly, epicardially, or subcutaneously. The electrode may function alternately as a defibrillation electrode and as a sensing electrode in a lead with a separate pacing electrode.
    Type: Grant
    Filed: February 15, 1995
    Date of Patent: August 6, 1996
    Assignee: Ventritex, Inc.
    Inventors: Craig E. Mar, Benjamin D. Pless, M. Elizabeth Bush
  • Patent number: 5488768
    Abstract: A method for electrically attaching electrode wire to a conductor in a defibrillation lead is disclosed. The method comprises melting the end of the wire with a hydrogen torch to form a ball of metal, then crimping or welding the ball to the conductor or to a joining piece attached to the conductor. Also, a hydrogen torch (water welder) may be used to join two or more electrode wires to each other.
    Type: Grant
    Filed: September 24, 1993
    Date of Patent: February 6, 1996
    Assignee: Ventritex, Inc.
    Inventor: Craig E. Mar
  • Patent number: D894396
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: August 25, 2020
    Assignee: PACESETTER, INC.
    Inventors: Jennifer Heisel, Craig E. Mar, Benjamin F. James, IV, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun