Patents by Inventor Craig Grimes

Craig Grimes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230079926
    Abstract: An improved apparatus for the separation of gas or gas-vapor, as well as simultaneous product transformation or conversion of one or more of the separated gas or gas-vapor species, includes modification of a Ranque-Hilsch vortex tube to include an electric field internal to the vortex tube, created either by an applied potential or induced by temperature-dependent triboelectric effects, or a combination of both. The electric field is used to enhance separation of gaseous components, with particular emphasis on separation of CO2 from a gaseous mixture, and to promote subsequent conversion of the resulting separated gaseous product or products.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 16, 2023
    Inventor: Craig A. Grimes
  • Publication number: 20220401879
    Abstract: Systems for separating and concentrating CO2 from air or a gas include a vortex tube designed for separating and concentrating CO2 from a gaseous input stream. The vortex tube has an operating design pressure of between 105 psi and 280 psi above atmospheric pressure and produces a concentrated CO2 outlet stream. The concentrated CO2 outlet stream is in fluid connection with a conversion system capable of converting the separated CO2 into another chemical compound.
    Type: Application
    Filed: May 25, 2022
    Publication date: December 22, 2022
    Inventors: Craig A. Grimes, Kevin Kreisler
  • Publication number: 20220401942
    Abstract: A photoreactor having computer actuated input/output ports is operated by introducing reactant through an input port and collecting product through an output port, and upon closure of the input and output ports, treating photocatalyst within the photoreactor to remove intermediates limiting performance of the photocatalyst. Once the photocatalyst is regenerated, introduction of reactant to the photoreactor through the input port and collection of product from the output port can be resumed. The automated process does not require removal of catalyst from the photoreactor and significantly improves process economics.
    Type: Application
    Filed: May 24, 2022
    Publication date: December 22, 2022
    Inventor: Craig A. Grimes
  • Publication number: 20220387929
    Abstract: An integrated system for harvesting water from air includes an air propelling unit, a water condensation unit, and a fog harvester. The water condensation unit receives propelled air from the air propelling unit, and includes an airfoil designed to locally reduce pressure and temperature, thereby promoting water vapor condensation within the received propelled air. The fog harvester receives the propelled air with condensed water from the water condensation unit and collects the condensed water.
    Type: Application
    Filed: May 25, 2022
    Publication date: December 8, 2022
    Inventors: Craig A. Grimes, Kevin Kreisler, Scott C. Kreisler
  • Patent number: 11482631
    Abstract: The present invention relates to the design and fabrication of a device able to efficiently convert broad-spectrum, microwave to X-ray, electromagnetic energy into electricity. Exciton Scavenger fabrication requires intercalation of rare earth ion containing crystallites, quantum-dots, or nanoparticles within a one-dimensional semiconducting material nanoarchitecture, such as arrays of nanowires or nanotubes.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: October 25, 2022
    Assignee: Comstock IP Holdings LLC
    Inventors: Craig A Grimes, Kevin Kreisler
  • Patent number: 11211458
    Abstract: The present invention relates to the design and fabrication of a device able to efficiently convert broad-spectrum electromagnetic radiation, including but not limited to microwave, millimeter wave, infrared, visible, and ultraviolet, into charge carriers, then separate and direct said charge carriers to promote photosynthetic or photocatalytic reactions, such as the photoconversion of CO2 and water vapor to hydrocarbon fuels. Device fabrication requires intercalation of rare-earth ion containing crystallites, be they nanoparticles or quantum-dots, bound by an electrically insulating organic or inorganic shell, within a one-dimensional semiconducting material nanoarchitecture such as arrays of nanowires or nanotubes.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: December 28, 2021
    Inventors: Craig A Grimes, Kevin Kreisler
  • Publication number: 20200335647
    Abstract: The present invention relates to the design and fabrication of a device able to efficiently convert broad-spectrum, microwave to X-ray, electromagnetic energy into electricity. Exciton Scavenger fabrication requires intercalation of rare earth ion containing crystallites, quantum-dots, or nanoparticles within a one-dimensional semiconducting material nanoarchitecture, such as arrays of nanowires or nanotubes.
    Type: Application
    Filed: June 19, 2019
    Publication date: October 22, 2020
    Inventors: CRAIG A. GRIMES, KEVIN KREISLER
  • Publication number: 20190381476
    Abstract: An improved photocatalytic device in which within semiconductors, absorbed electromagnetic radiation is known to generate electron-hole pairs; unwanted recombination of the radiation-generated electrons and holes is a significant limitation of photocatalytic efficiency, while the simultaneous local presence of both electrons and holes at the photocatalyst surface make reaction-specificity difficult to control. A photocatalytic device is described in which radiation-generated electrons and holes are spatially separated to be individually introduced into the reactant flow, minimizing unwanted recombination while promoting reaction-specific outcomes.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 19, 2019
    Inventors: CRAIG A. GRIMES, KEVIN KREISLER
  • Publication number: 20190386105
    Abstract: The present invention relates to the design and fabrication of a device able to efficiently convert broad-spectrum electromagnetic radiation, including but not limited to microwave, millimeter wave, infrared, visible, and ultraviolet, into charge carriers, then separate and direct said charge carriers to promote photosynthetic or photocatalytic reactions, such as the photoconversion of CO2 and water vapor to hydrocarbon fuels. Device fabrication requires intercalation of rare-earth ion containing crystallites, be they nanoparticles or quantum-dots, bound by an electrically insulating organic or inorganic shell, within a one-dimensional semiconducting material nanoarchitecture such as arrays of nanowires or nanotubes.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 19, 2019
    Inventors: CRAIG A. GRIMES, KEVIN KREISLER
  • Patent number: 10426871
    Abstract: Compositions including a surface or film comprising nanofibers, nanotubes or microwells comprising a bioactive agent for elution to the surrounding tissue upon placement of the composition in a subject are disclosed. The compositions are useful in medical implants and methods of treating a patient in need of an implant, including orthopedic implants, dental implants, cardiovascular implants, neurological implants, neurovascular implants, gastrointestinal implants, muscular implants, and ocular implants.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: October 1, 2019
    Assignees: The Regents of the University of California, The Penn State Research Foundation
    Inventors: Tejal A. Desai, Ketul C. Popat, Craig A. Grimes
  • Publication number: 20180185549
    Abstract: Compositions including a surface or film comprising nanofibers, nanotubes or microwells comprising a bioactive agent for elution to the surrounding tissue upon placement of the composition in a subject are disclosed. The compositions are useful in medical implants and methods of treating a patient in need of an implant, including orthopedic implants, dental implants, cardiovascular implants, neurological implants, neurovascular implants, gastrointestinal implants, muscular implants, and ocular implants.
    Type: Application
    Filed: October 2, 2017
    Publication date: July 5, 2018
    Inventors: Tejal A. Desai, Ketul C. Popat, Craig A. Grimes
  • Patent number: 9775932
    Abstract: Compositions including a surface or film comprising nanofibers, nanotubes or microwells comprising a bioactive agent for elution to the surrounding tissue upon placement of the composition in a subject are disclosed The compositions are useful in medical implants and methods of treating a patient in need of an implant, including orthopedic implants, dental implants, cardiovascular implants, neurological implants, neurovascular implants, gastrointestinal implants, muscular implants, and ocular implants.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: October 3, 2017
    Assignees: The Regents of the University of California, The Penn State Research Foundation
    Inventors: Tejal A. Desai, Ketal C. Popat, Craig A. Grimes
  • Patent number: 9711670
    Abstract: Self-powered portable electronic devices are disclosed that have the capacity to generate their own electrical power, store electrical charge, and distribute electrical power to similarly designed devices in close proximity. Devices generate power in part using one or more non-solar thermal energy sources that have increased stability and efficiency compared to current solar cell powered devices. Devices comprise components including, control processors, data storage, energy storage, dedicated energy and power management processors, and thermophotovoltaic cells that convert thermal energy into electrical power. Devices are capable of transmitting and receiving energy, power, voice and data information using standard frequencies associated with portable devices. Additionally, the invention discloses methods, systems, and apparatuses comprising circuitry that can control power generation from multiple thermophotovoltaic cells and traditional power sources.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: July 18, 2017
    Assignee: FLUXPHOTON CORPORATION
    Inventors: Craig Grimes, Kevin Kreisler
  • Patent number: 9394623
    Abstract: The present invention relates to fabrication and application of compositions, devices, methods and systems for utilizing radiation more efficiently as compared to known systems. A synthesis method provides deposition of titania on a substrate without the use of an electrochemical reaction. An integrated architecture formed by the method of the present invention is comprised of vertically-oriented, one-dimensional, monocrystalline, n-type anatase nanowires in communication with a common transparent conductive substrate, and which are intercalated with a consortia of p-type quantum dots tuned for absorption of infrared and other radiation.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: July 19, 2016
    Inventors: Craig Grimes, Thomas Latempa, Kevin Kreisler
  • Patent number: 8835285
    Abstract: The present invention relates to growth of vertically-oriented crystalline nanowire arrays upon a transparent conductive or other substrate for use in 3rd generation photovoltaic and other applications. A method of growing crystalline anatase nanowires includes the steps of: deposition of titania onto a substrate; conversion of the titania into titanate nanowires; and, treatment of the titanate nanowires to produce crystalline anatase nanowires.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 16, 2014
    Assignee: Flux Photon Corporation
    Inventors: Craig A. Grimes, Xinjian Feng, Kevin E. Kreisler
  • Publication number: 20140196658
    Abstract: The present invention relates to fabrication and application of compositions, devices, methods and systems for utilizing radiation more efficiently as compared to known systems. A synthesis method provides deposition of titania on a substrate without the use of an electrochemical reaction. An integrated architecture formed by the method of the present invention is comprised of vertically-oriented, one-dimensional, monocrystalline, n-type anatase nanowires in communication with a common transparent conductive substrate, and which are intercalated with a consortia of p-type quantum dots tuned for absorption of infrared and other radiation.
    Type: Application
    Filed: March 17, 2014
    Publication date: July 17, 2014
    Inventors: Craig GRIMES, Thomas LATEMPA, Kevin KREISLER
  • Publication number: 20140097786
    Abstract: Self-powered portable electronic devices are disclosed that have the capacity to generate their own electrical power, store electrical charge, and distribute electrical power to similarly designed devices in close proximity. Devices generate power in part using one or more non-solar thermal energy sources that have increased stability and efficiency compared to current solar cell powered devices. Devices comprise components including, control processors, data storage, energy storage, dedicated energy and power management processors, and thermophotovoltaic cells that convert thermal energy into electrical power. Devices are capable of transmitting and receiving energy, power, voice and data information using standard frequencies associated with portable devices. Additionally, the invention discloses methods, systems, and apparatuses comprising circuitry that can control power generation from multiple thermophotovoltaic cells and traditional power sources.
    Type: Application
    Filed: September 3, 2013
    Publication date: April 10, 2014
    Inventors: Craig GRIMES, Kevin KREISLER
  • Publication number: 20130048947
    Abstract: The present invention relates to growth of vertically-oriented crystalline nanowire arrays upon a transparent conductive or other substrate for use in 3rd generation photovoltaic and other applications. A method of growing crystalline anatase nanowires includes the steps of: deposition of titania onto a substrate; conversion of the titania into titanate nanowires; and, treatment of the titanate nanowires to produce crystalline anatase nanowires.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 28, 2013
    Inventors: Craig A. Grimes, Xinjian Feng, Kevin E. Kreisler
  • Publication number: 20120114734
    Abstract: Compositions including a surface or film comprising nanofibers, nanotubes or microwells comprising a bioactive agent for elution to the surrounding tissue upon placement of the composition in a subject are disclosed The compositions are useful in medical implants and methods of treating a patient in need of an implant, including orthopedic implants, dental implants, cardiovascular implants, neurological implants, neurovascular implants, gastrointestinal implants, muscular implants, and ocular implants.
    Type: Application
    Filed: March 17, 2008
    Publication date: May 10, 2012
    Inventors: Tejal A. Desai, Ketal C. Popat, Craig A. Grimes
  • Patent number: 7912661
    Abstract: Circuitry and program code adapted for carrying out an associated technique for characterizing the response of one or more magnetoelastic sensor elements during exposure to an excitation field generated by an interrogation coil: including: (a) measuring a total sensor signal from the coil with the sensor element positioned within the excitation field within a spacing created by a winding of the coil; and (b) automatically determining: (i) a total measured impedance spectrum from said total sensor signal so measured, and (ii) a plurality of magnitude values representing the real part of a reconstructed impedance spectrum for the sensor element. The reconstructed impedance spectrum for the sensor element, having been calculated by subtracting an impedance generally attributable to the coil during the time an AC excitation signal is provided, from the total measured impedance.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: March 22, 2011
    Assignee: KMG2 Sensors Corporation
    Inventors: Kefeng Zeng, Keat Ghee Ong, Xiping Yang, Craig A. Grimes