Patents by Inventor Craig Horne

Craig Horne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11947000
    Abstract: Systems, methods, and computer-readable media are described for compact radar systems. In some examples, a compact radar system can include a first set of transmit antennas, a second set of receive antennas, one or more processors, and at least one computer-readable storage medium storing computer-executable instructions which, when executed by the one or more processors, cause the radar system to coordinate digital beam steering of the first set of transmit antennas and the second set of receive antennas, and coordinate digital beam forming with one or more of the second set of receive antennas to detect one or more objects within a distance of the radar system.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: April 2, 2024
    Assignee: FORTEM TECHNOLOGIES, INC.
    Inventors: Adam Eugene Robertson, Jon Erik Knabenschuh, Lyman Davies Horne, Tyler Drue Park, Matthew Robertson Morin, James David Mackie, Matthew Elliott Argyle, Bryan Alan Davis, Chester Parker Ferry, Daniel Glen Bezzant, Justin Craig Huntington, Nathan James Packard
  • Patent number: 10520249
    Abstract: A process for separating a mixed or raw gas feed to produce a dry gas product and a hydrocarbon liquid product is provided. The process comprises scrubbing heavier hydrocarbon components from the gas feed to produce a lighter ends gas stream and a heavier ends liquid stream; cooling the lighter ends gas stream and separating the cooled lighter ends gas stream into a cold liquid stream and the dry gas product; and using the cold liquid stream to assist in scrubbing the heavier hydrocarbon components from the gas feed.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: December 31, 2019
    Assignee: ENCANA CORPORATION
    Inventor: Stephen Craig Horne
  • Publication number: 20170211877
    Abstract: A process for separating a mixed or raw gas feed to produce a dry gas product and a hydrocarbon liquid product is provided. The process comprises scrubbing heavier hydrocarbon components from the gas feed to produce a lighter ends gas stream and a heavier ends liquid stream; cooling the lighter ends gas stream and separating the cooled lighter ends gas stream into a cold liquid stream and the dry gas product; and using the cold liquid stream to assist in scrubbing the heavier hydrocarbon components from the gas feed.
    Type: Application
    Filed: November 16, 2016
    Publication date: July 27, 2017
    Inventor: STEPHEN CRAIG HORNE
  • Publication number: 20080069945
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Application
    Filed: October 19, 2007
    Publication date: March 20, 2008
    Inventors: Craig Horne, Pierre DeMascarel, Christian Honeker, Benjamin Chaloner-Gill, Herman Lopez, Xiangxin Bi, Ronald Mosso, William McGovern, James Gardner, Sujeet Kumar, James Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Publication number: 20080026220
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 31, 2008
    Inventors: Xiangxin Bi, Nobuyuki Kambe, Craig Horne, James Gardner, Ronald Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William McGovern, Pierre DeMascarel, Robert Lynch
  • Publication number: 20060286378
    Abstract: Collections of composite particles comprise inorganic particles and another composition, such as a polymer and/or a coating composition. In some embodiments, the composite particles have small average particle sizes, such as no more than about 10 microns or no more than about 2.5 microns. The composite particles can have selected particle architectures. The inorganic particles can have compositions selected for particular properties. The composite particles can be effective for printing applications, for the formation of optical coatings, and other desirable applications.
    Type: Application
    Filed: May 22, 2006
    Publication date: December 21, 2006
    Inventors: Shivkumar Chiruvolu, Hui Du, William McGovern, Craig Horne, Ronald Mosso, Nobuyuki Kambe
  • Publication number: 20060147369
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Application
    Filed: February 17, 2006
    Publication date: July 6, 2006
    Inventors: Xiangxin Bi, Nobuyuki Kambe, Craig Horne, James Gardner, Ronald Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William McGovern, Pierre DeMascarel, Robert Lynch
  • Publication number: 20050264811
    Abstract: Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.
    Type: Application
    Filed: July 28, 2005
    Publication date: December 1, 2005
    Inventors: Xiangxin Bi, Elizabeth Nevis, Ronald Mosso, Michael Chapin, Shivkumar Chiruvolu, Sardar Khan, Sujeet Kumar, Herman Lopez, Nguyen Huy, Craig Horne, Michael Bryan, Eric Euvrard
  • Publication number: 20050158690
    Abstract: Combinatorial synthesis methods obtain a plurality of compositions having materially different characteristics using an apparatus having a plurality of collectors. A first quantity of fluid reactants are reacted to form a first quantity of product composition. Following completion of the collection of the first quantity of product composition, a second quantity of fluid reactants are reacted to form a second quantity of product composition, the second quantity of product composition being material different from the first quantity of product composition. An apparatus includes a nozzle connected to a reactant source and a plurality of collectors. The nozzle and plurality of collectors move relative to each other such that a collector can be selectively placed to receive a fluid stream emanating from the nozzle. The plurality of product compositions can be evaluated to determine their suitability for various applications.
    Type: Application
    Filed: December 14, 2004
    Publication date: July 21, 2005
    Inventors: Xiangxin Bi, Sujeet Kumar, Craig Horne, Ronald Mosso, James Gardner, Shivkumar Chiruvolo, Seung Lim
  • Publication number: 20050118411
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Application
    Filed: October 29, 2004
    Publication date: June 2, 2005
    Inventors: Craig Horne, Pierre DeMascarel, Christian Honeker, Benjamin Chaloner-Gill, Herman Lopez, Xiangxin Bi, Ronald Mosso, William McGovern, James Gardner, Sujeet Kumar, James Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chinuvolu, Jesse Jur
  • Publication number: 20050016839
    Abstract: Light reactive deposition can be adapted effectively for the deposition of one or more electrochemical cell components. In particular, electrodes, electrolytes, electrical interconnects can be deposited form a reactive flow. In some embodiments, the reactive flow comprises a reactant stream that intersects a light beam to drive a reaction within a light reactive zone to produce product that is deposited on a substrate. The approach is extremely versatile for the production of a range of compositions that are useful in electrochemical cells and fuel cell, in particular. The properties of the materials, including the density and porosity can be adjusted based on the deposition properties and any subsequent processing including, for example, heat treatments.
    Type: Application
    Filed: May 27, 2004
    Publication date: January 27, 2005
    Inventors: Craig Horne, William McGovern, Robert Lynch, Ronald Mosso