Patents by Inventor Craig M Ciesla

Craig M Ciesla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11747263
    Abstract: Flow cells and corresponding methods are provided. The flow cells may include a support frame with top and back sides, and at least one cavity extending from the top side. The flow cells may include at least one light detection device with an active area disposed within the at least one cavity. The flow cells may include a support material disposed within the at least one cavity between the support frame and the periphery of the at least one light detection device coupling them together. The flow cells may include a lid extending over the at least one light detection device and coupled to the support frame about the periphery of the at least one light detection device. The lid and at least a top surface of the at least one light detection device form a flow channel therebetween.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: September 5, 2023
    Assignee: Illumina, Inc.
    Inventors: Arnaud Rival, Ali Agah, Tracy H. Fung, Dietrich Dehlinger, Poorya Sabounchi, Tarun Khurana, Craig M. Ciesla, M. Shane Bowen
  • Publication number: 20220341837
    Abstract: Flow cells and corresponding methods are provided. The flow cells may include a support frame with top and back sides, and at least one cavity extending from the top side. The flow cells may include at least one light detection device with an active area disposed within the at least one cavity. The flow cells may include a support material disposed within the at least one cavity between the support frame and the periphery of the at least one light detection device coupling them together. The flow cells may include a lid extending over the at least one light detection device and coupled to the support frame about the periphery of the at least one light detection device. The lid and at least a top surface of the at least one light detection device form a flow channel therebetween.
    Type: Application
    Filed: July 11, 2022
    Publication date: October 27, 2022
    Applicant: Illumina, Inc.
    Inventors: Arnaud RIVAL, Ali AGAH, Tracy H. FUNG, Dietrich DEHLINGER, Poorya SABOUNCHI, Tarun KHURANA, Craig M. CIESLA, M. Shane BOWEN
  • Patent number: 11385162
    Abstract: Flow cells and corresponding methods are provided. The flow cells may include a support frame with top and back sides, and at least one cavity extending from the top side. The flow cells may include at least one light detection device with an active area disposed within the at least one cavity. The flow cells may include a support material disposed within the at least one cavity between the support frame and the periphery of the at least one light detection device coupling them together. The flow cells may include a lid extending over the at least one light detection device and coupled to the support frame about the periphery of the at least one light detection device. The lid and at least a top surface of the at least one light detection device form a flow channel therebetween.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: July 12, 2022
    Assignee: ILLUMINA, INC.
    Inventors: Arnaud Rival, Ali Agah, Tracy H. Fung, Dietrich Dehlinger, Poorya Sabounchi, Tarun Khurana, Craig M. Ciesla, M. Shane Bowen
  • Publication number: 20220186307
    Abstract: An image sensor structure includes an image layer having an array of light detectors disposed therein. A device stack is disposed over the image layer. An array of light guides is disposed in the device stack. Each light guide is associated with a light detector. An array of nanowells is disposed over the device stack. Each nanowell is associated with a first light guide of the array of light guides. A first primer set is disposed throughout a first well region of each nanowell. A second primer set is disposed throughout a second well region of each nanowell. The second well region is adjacent the first well region. The first and second primer sets are operable to attach a forward strand cluster of forward polynucleotide strands in the first well region and a reverse strand cluster of reverse polynucleotide strands in the second well region.
    Type: Application
    Filed: December 9, 2021
    Publication date: June 16, 2022
    Applicants: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Lewis KRAFT, Craig Lee HETHERINGTON, Craig M. CIESLA, Michael BUREK, Jeffrey FISHER, Jason BETLEY
  • Publication number: 20210131940
    Abstract: Flow cells and corresponding methods are provided. The flow cells may include a support frame with top and back sides, and at least one cavity extending from the top side. The flow cells may include at least one light detection device with an active area disposed within the at least one cavity. The flow cells may include a support material disposed within the at least one cavity between the support frame and the periphery of the at least one light detection device coupling them together. The flow cells may include a lid extending over the at least one light detection device and coupled to the support frame about the periphery of the at least one light detection device. The lid and at least a top surface of the at least one light detection device form a flow channel therebetween.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Applicant: Illumina, Inc.
    Inventors: Arnaud RIVAL, Ali AGAH, Tracy H. FUNG, Dietrich DEHLINGER, Poorya SABOUNCHI, Tarun KHURANA, Craig M. CIESLA, M. Shane BOWEN
  • Patent number: 10921233
    Abstract: Flow cells and corresponding methods are provided. The flow cells may include a support frame with top and back sides, and at least one cavity extending from the top side. The flow cells may include at least one light detection device with an active area disposed within the at least one cavity. The flow cells may include a support material disposed within the at least one cavity between the support frame and the periphery of the at least one light detection device coupling them together. The flow cells may include a lid extending over the at least one light detection device and coupled to the support frame about the periphery of the at least one light detection device. The lid and at least a top surface of the at least one light detection device form a flow channel therebetween.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: February 16, 2021
    Assignee: Illumina, Inc.
    Inventors: Arnaud Rival, Ali Agah, Tracy H. Fung, Dietrich Dehlinger, Poorya Sabounchi, Tarun Khurana, Craig M. Ciesla, M. Shane Bowen
  • Publication number: 20200088622
    Abstract: Flow cells and corresponding methods are provided. The flow cells may include a support frame with top and back sides, and at least one cavity extending from the top side. The flow cells may include at least one light detection device with an active area disposed within the at least one cavity. The flow cells may include a support material disposed within the at least one cavity between the support frame and the periphery of the at least one light detection device coupling them together. The flow cells may include a lid extending over the at least one light detection device and coupled to the support frame about the periphery of the at least one light detection device. The lid and at least a top surface of the at least one light detection device form a flow channel therebetween.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 19, 2020
    Applicant: Illumina, Inc.
    Inventors: Arnaud RIVAL, Ali AGAH, Tracy H. FUNG, Dietrich DEHLINGER, Poorya SABOUNCHI, Tarun KHURANA, Craig M. CIESLA, M. Shane BOWEN
  • Publication number: 20170199571
    Abstract: A method for actuating a tactile interface layer of a device that defines a surface with a deformable region, comprising the steps of deforming a deformable region of the surface into a formation tactilely distinguishable from the surface, detecting a force from the user on a deformed deformable region, interpreting the force as a command for the deformable region, and manipulating the deformable region of the surface based on the command.
    Type: Application
    Filed: July 19, 2016
    Publication date: July 13, 2017
    Applicant: Tactus Technology, Inc.
    Inventors: Craig M. Ciesla, Micah Yairi, Nathaniel Saal
  • Publication number: 20170199572
    Abstract: One variation of a dynamic tactile interface includes: a substrate including a first transparent material and defining an attachment surface, an open channel opposite the attachment surface, and a fluid conduit intersecting the open channel and passing through the attachment surface; a tactile layer including a second transparent material and defining a tactile surface, a peripheral region bonded to the attachment surface opposite the tactile surface, and a deformable region adjacent the fluid conduit and disconnected from the attachment surface; a closing panel bonded to the substrate opposite the attachment surface and enclosing the open channel to define a fluid channel; a working fluid; and a displacement device configured to displace the working fluid into the fluid channel and through the fluid conduit to transition the deformable region from a retracted setting to an expanded setting.
    Type: Application
    Filed: July 19, 2016
    Publication date: July 13, 2017
    Applicant: Tactus Technology, Inc.
    Inventors: Micah Yairi, Craig M. Ciesla, Nathaniel Saal, Curtis A. Ray, Michael Hammersley, Brandon Miller, Ben Calub, Carl Del Rosario, Mario S. Garcia, Ron Menigoz, David Henry Krevor, Jonathon Jenkins
  • Publication number: 20170199573
    Abstract: One variation of a dynamic tactile interface includes a tactile layer defining a peripheral region and a deformable region adjacent the peripheral region; a substrate coupled to the peripheral region, a fluid conduit adjacent the deformable region, a fluid channel fluidly coupled to the fluid conduit, and a via fluidly coupled to the fluid channel and passing through the back surface; a bladder fluidly coupled to the via and the substrate; a structure adjacent a first side of the bladder; and a platen adjacent a second side of the bladder opposite the first side and compressing the bladder against the structure substantially perpendicular the longitudinal axis of the bladder and substantially parallel the substrate to displace fluid from the bladder and into the fluid channel to transition the deformable region from a retracted setting into an expanded setting.
    Type: Application
    Filed: July 20, 2016
    Publication date: July 13, 2017
    Applicant: Tactus Technology, Inc.
    Inventors: Ben Calub, Carl Del Rosario, Mario Garcia, Michael Hammersley, Roman Rak, Curtis A. Ray, Micah Yairi, Nathan Knapp, Robert Adrian Ray, Brandon Miller, Kyle K. Gregory, Maxwell Harshorn Shimshak, Craig M. Ciesla
  • Patent number: 9552065
    Abstract: A dynamic tactile interface including a tactile layer defining a first region and a deformable region adjacent the first region; a substrate coupled to the tactile layer at the first region, defining a variable volume adjacent the deformable region and defining a fluid channel fluidly coupled to the variable volume; a set of rigid structures distributed across the tactile layer defining an anti-reflective coating over the tactile layer; and a displacement device fluidly coupled to the fluid channel, the displacement device displacing fluid into the fluid channel to transition the deformable region from a retracted setting to an expanded setting, the deformable region tactilely distinguishable from the first region in the expanded setting, the set of rigid structures conforming to the tactile layer, each rigid structure in the set of rigid structures shifting relative to an adjacent rigid structure in the set of rigid structures.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: January 24, 2017
    Assignee: Tactus Technology, Inc.
    Inventors: Micah B. Yairi, Craig M. Ciesla, Curtis Ray
  • Publication number: 20160364000
    Abstract: A touch sensitive display assembly includes a touch screen and a button array. The touch screen is configured to display one or more input keys. The button array includes one or more buttons corresponding to the one or more input keys. The button array is formed by a substrate attached to a button membrane thereby creating a set of button cavities corresponding to the input keys. The button cavities are configured to be inflated and deflated by a pump coupled to a fluid reservoir. The cavities can be inflated/deflated together, in subsets, and/or individually. In some embodiments, the button array is sandwiched between a touch sensing layer and a display of the touch screen. In other embodiments, the button array can be located either above or below the touch screen.
    Type: Application
    Filed: August 10, 2016
    Publication date: December 15, 2016
    Inventor: Craig M. Ciesla
  • Patent number: 9495055
    Abstract: One variation of a method for controlling a dynamic tactile user interface includes: sensing a capacitance value across a portion of a cavity, a tactile layer defining a deformable region and a peripheral region, the peripheral region adjacent the deformable region, and the deformable region cooperating with the substrate to define the cavity; estimating a vertical position of the tactile surface at the deformable region according to the sensed capacitance value across the portion of the cavity; manipulating a fluid pressure within the cavity to modify a vertical position of the tactile surface at the deformable region according to a difference between the estimated vertical position of the tactile surface at the deformable region and a target vertical position of the tactile surface at the deformable region; and sensing an input on the tactile surface according to a change in capacitance value across the portion of the cavity.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: November 15, 2016
    Assignee: Tactus Technology, Inc.
    Inventors: Micah B. Yairi, Todd A. Culver, Craig M. Ciesla
  • Patent number: 9448630
    Abstract: A method for actuating a tactile interface layer of a device that defines a surface with a deformable region, comprising the steps of deforming a deformable region of the surface into a formation tactilely distinguishable from the surface, detecting a force from the user on a deformed deformable region, interpreting the force as a command for the deformable region, and manipulating the deformable region of the surface based on the command.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: September 20, 2016
    Assignee: Tactus Technology, Inc.
    Inventors: Craig M. Ciesla, Micah Yairi, Nathaniel Saal
  • Publication number: 20160231841
    Abstract: One variation of a user interface includes: a substrate defining a fluid channel fluidly coupled to a cavity and including a linear segment parallel to a first direction; a tactile layer including a tactile surface, a deformable region cooperating with the substrate to define the cavity, and an peripheral region coupled to the substrate proximal a perimeter of the cavity; a displacement device coupled to the fluid channel and configured to displace fluid through the fluid channel to transition the deformable region from a retracted setting to an expanded setting, the deformable region tactilely distinguishable from the peripheral region in the expanded setting; a display coupled to the substrate and including a set of pixels arranged in a linear pixel pattern parallel to a second direction nonparallel with the first direction; and a sensor coupled to the substrate and configured to detect an input on the tactile surface.
    Type: Application
    Filed: April 20, 2016
    Publication date: August 11, 2016
    Inventors: Micah B. Yairi, Craig M. Ciesla, Nathaniel Mark Saal
  • Publication number: 20150248165
    Abstract: A touch sensitive display assembly includes a touch screen and a button array. The touch screen is configured to display one or more input keys. The button array includes one or more buttons corresponding to the one or more input keys. The button array is formed by a substrate attached to a button membrane thereby creating a set of button cavities corresponding to the input keys. The button cavities are configured to be inflated and deflated by a pump coupled to a fluid reservoir. The cavities can be inflated/deflated together, in subsets, and/or individually. In some embodiments, the button array is sandwiched between a touch sensing layer and a display of the touch screen. In other embodiments, the button array can be located either above or below the touch screen.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 3, 2015
    Inventor: Craig M. Ciesla
  • Publication number: 20150248164
    Abstract: The user interface system of one embodiment of the invention includes a sheet that defines a surface on one side and at least partially defines a first cavity and a second cavity on an opposite side; a fluid network coupled to the first and second cavities; a displacement device coupled to the fluid network that displaces fluid within the fluid network and expands both the first and second cavities concurrently, thereby deforming a first and a second particular region of the surface; and a touch sensor coupled to the sheet and adapted to sense a user touch proximate the first and second particular regions of the surface. The user interface system of another embodiment of the invention includes a displacement device coupled to the fluid network that displaces fluid within the fluid network and selectively expands one of the first and second cavities.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 3, 2015
    Inventors: Craig M. Ciesla, Micah B. Yairi
  • Publication number: 20150242020
    Abstract: One variation of a method for controlling a dynamic tactile user interface includes: sensing a capacitance value across a portion of a cavity, a tactile layer defining a deformable region and a peripheral region, the peripheral region adjacent the deformable region, and the deformable region cooperating with the substrate to define the cavity; estimating a vertical position of the tactile surface at the deformable region according to the sensed capacitance value across the portion of the cavity; manipulating a fluid pressure within the cavity to modify a vertical position of the tactile surface at the deformable region according to a difference between the estimated vertical position of the tactile surface at the deformable region and a target vertical position of the tactile surface at the deformable region; and sensing an input on the tactile surface according to a change in capacitance value across the portion of the cavity.
    Type: Application
    Filed: May 13, 2015
    Publication date: August 27, 2015
    Inventors: Micah B. Yairi, Todd A. Culver, Craig M. Ciesla
  • Patent number: 9063627
    Abstract: One variation of a method for controlling a dynamic tactile user interface includes: sensing a first capacitance value across a portion of a cavity in a retracted setting; sensing a second capacitance value across a peripheral region; generating a capacitance map according to the first capacitance value and the second capacitance value; modifying a fluid pressure within the cavity to transition the cavity into an expanded setting, the deformable region elevated above the peripheral region in the expanded setting; sensing a third capacitance value across the portion of the cavity in the expanded setting; updating the capacitance map according to the third capacitance value; and detecting an input on the tactile surface at the deformable region according to a comparison between a sensed capacitance value across the portion of the cavity and the capacitance map.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: June 23, 2015
    Assignee: Tactus Technology, Inc.
    Inventors: Micah B. Yairi, Todd A. Culver, Craig M. Ciesla
  • Patent number: 9052790
    Abstract: One variation of a method for controlling a dynamic tactile user interface includes: sensing a capacitance value across a portion of a cavity, a tactile layer defining a deformable region and a peripheral region, the peripheral region adjacent the deformable region, and the deformable region cooperating with the substrate to define the cavity; estimating a vertical position of the tactile surface at the deformable region according to the sensed capacitance value across the portion of the cavity; manipulating a fluid pressure within the cavity to modify a vertical position of the tactile surface at the deformable region according to a difference between the estimated vertical position of the tactile surface at the deformable region and a target vertical position of the tactile surface at the deformable region; and sensing an input on the tactile surface according to a change in capacitance value across the portion of the cavity.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: June 9, 2015
    Assignee: Tactus Technology, Inc.
    Inventors: Micah B. Yairi, Todd A. Culver, Craig M. Ciesla