Patents by Inventor Craig Ziemer

Craig Ziemer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8385493
    Abstract: Disclosed is a system and method for improving the linearity of a clock and data recovery (CDR) circuit. In one embodiment, a data stream is received, and the phase of a clock signal is adjusted using two interpolators. The phase of the output signal of the second interpolator is adjusted simultaneously with, and complementary to, adjusting the phase of the first interpolator. The first interpolator's output signal is injected into a first delay cell in a delay loop having a plurality of delay cells, and the output of the second interpolator is inactivated. When the maximum phase of the first interpolator's output signal is reached, the second interpolator's output signal is injected into another one of the delay cells, and the first interpolator's output signal is inactivated. The data stream is then recovered using the output of the delay loop as a clock signal.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: February 26, 2013
    Assignee: Agere Systems LLC
    Inventors: Christopher Abel, Joseph Anidjar, Vladimir Sindalovsky, Craig Ziemer
  • Publication number: 20100195777
    Abstract: Disclosed is a system and method for improving the linearity of a clock and data recovery (CDR) circuit. In one embodiment, a data stream is received, and the phase of a clock signal is adjusted using two interpolators. The phase of the output signal of the second interpolator is adjusted simultaneously with, and complementary to, adjusting the phase of the first interpolator. The first interpolator's output signal is injected into a first delay cell in a delay loop having a plurality of delay cells, and the output of the second interpolator is inactivated. When the maximum phase of the first interpolator's output signal is reached, the second interpolator's output signal is injected into another one of the delay cells, and the first interpolator's output signal is inactivated. The data stream is then recovered using the output of the delay loop as a clock signal.
    Type: Application
    Filed: April 7, 2010
    Publication date: August 5, 2010
    Applicant: AGERE SYSTEMS INC.
    Inventors: Christopher Abel, Joseph Anidjar, Vladimir Sindalovsky, Craig Ziemer
  • Patent number: 7724857
    Abstract: Disclosed is a system and method for improving the linearity of a clock and data recovery (CDR) circuit. In one embodiment, a data stream is received, and the phase of a clock signal is adjusted using two interpolators. The phase of the output signal of the second interpolator is adjusted simultaneously with, and complementary to, adjusting the phase of the first interpolator. The first interpolator's output signal is injected into a first delay cell in a delay loop having a plurality of delay cells, and the output of the second interpolator is inactivated. When the maximum phase of the first interpolator's output signal is reached, the second interpolator's output signal is injected into another one of the delay cells, and the first interpolator's output signal is inactivated. The data stream is then recovered using the output of the delay loop as a clock signal.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: May 25, 2010
    Assignee: Agere Systems Inc.
    Inventors: Christopher Abel, Joseph Anidjar, Vladimir Sindalovsky, Craig Ziemer
  • Publication number: 20080030251
    Abstract: Methods and apparatus are provided for improving phase switching and linearity in an analog phase interpolator. A phase interpolator in accordance with the present invention comprises (i) a plurality of tail current sources that are activated for substantially all times when the phase interpolator is operational; (ii) at least two pairs of input transistor devices, wherein one pair of the input transistor devices is associated with a minimum phase of the phase interpolator and another pair of the input transistor devices is associated with a maximum phase of the phase interpolator; and (iii) a plurality of current steering switches that provide currents generated by the plurality of tail current sources to one or more of the at least two pairs of input transistor devices, based on an applied interpolation control signal.
    Type: Application
    Filed: October 10, 2007
    Publication date: February 7, 2008
    Inventors: Ronald Freyman, Craig Ziemer
  • Publication number: 20070217558
    Abstract: Disclosed is a system and method for improving the linearity of a clock and data recovery (CDR) circuit. A data stream is received and the phase of a clock signal is adjusted using two interpolators. The data stream is then recovered using the clock signal.
    Type: Application
    Filed: March 15, 2006
    Publication date: September 20, 2007
    Inventors: Christopher Abel, Joseph Anidjar, Vladimir Sindalovsky, Craig Ziemer
  • Publication number: 20070189360
    Abstract: A circuit for spread spectrum rate control uses a first interpolator to phase interpolate between a first signal and a second signal and generate a first output signal based on a first control signal. A second interpolator is utilized to phase interpolate between a third signal and a fourth signal and generate a second output signal based on a second control signal. A multiplexer is used to select, based on a select signal, the first output signal or the second output signal as a spread spectrum clock (SSCLK). A leap-frog interpolator control is used to generate, in synchronism with the SSCLK, the first control signal based on a first type of phase adjustment request, the second control signal based on a second type of phase adjustment request, and the select signal to switch the multiplexer between the first output signal and the second output signal after allowing for an interpolator settling time when changing the first control signal or the second control signal.
    Type: Application
    Filed: February 14, 2006
    Publication date: August 16, 2007
    Applicant: Agere Systems Inc.
    Inventors: Mohammad Mobin, Gregory Sheets, Vladimir Sindalovsky, William Wilson, Craig Ziemer
  • Publication number: 20070052460
    Abstract: The present invention addresses the generation of a controlled clock source for use in trimming VCDL delay line output clocks. In this trimming process, adjustments are made for static variations in these output clocks. The invention's use of a controlled clock source eliminates the need for this trimming process to be conducted in real time and reduces the expense of the circuitry required.
    Type: Application
    Filed: September 7, 2005
    Publication date: March 8, 2007
    Applicant: Agere Systems Inc.
    Inventors: Mohammad Mobin, Gregory Sheets, Vladimir Sindalovsky, Lane Smith, Craig Ziemer
  • Publication number: 20060267660
    Abstract: A delay loop (e.g., a voltage-controlled delay loop) has (at least) two devices (e.g., interpolators) for generating clock signals for injection into the delay elements of the delay loop in a leap-frog manner, in which, while one interpolator is generating the clock signal currently selected for injection, the other interpolator can be controlled to generate the next clock signal to be selected for injection. This leap-frog technique can provide more settling time for generating injected clock signals than implementations that rely on a single interpolator.
    Type: Application
    Filed: May 26, 2005
    Publication date: November 30, 2006
    Inventors: Christopher Abel, Vladimir Sindalovsky, Craig Ziemer
  • Publication number: 20060268958
    Abstract: Methods and apparatus are provided for generating a frequency with a predefined offset from a reference frequency. A spread spectrum generator circuit is disclosed that comprises a voltage controlled delay loop for generating a plurality of signals having a different phase; and at least one interpolator for processing at least two of the signals to generate an output signal having a phase between a phase of the at least two of the signals, wherein the output is varied between a phase of the at least two of the signals to generate the spread spectrum. A spread spectrum having a frequency lower than an applied clock signal is generated using a continuous phase delay increase and a spread spectrum having a frequency higher than the clock signal is generated using a continuous phase delay decrease.
    Type: Application
    Filed: May 31, 2005
    Publication date: November 30, 2006
    Inventors: Vladimir Sindalovsky, Lane Smith, Craig Ziemer
  • Publication number: 20060220720
    Abstract: Methods and apparatus are provided for maintaining a desired slope of clock edges in a phase interpolator using an adjustable bias. The disclosed phase interpolator comprises at least one delay element to generate at least two interpolation signals each having an associated phase and a variable slope unit associated with each of the at least two interpolation signals, wherein a slope of each of the variable slope units is controlled by a bias signal and is varied based on a data rate of the interpolation signals. The slope is varied to maintain a desired slope of clock edges associated with the interpolation signals. The slope can be maintained, for example, between approximately the value of the delay between consecutive clock edges and twice the value of the delay between consecutive clock edges.
    Type: Application
    Filed: March 31, 2005
    Publication date: October 5, 2006
    Inventors: Ronald Freyman, Craig Ziemer
  • Publication number: 20060222135
    Abstract: Methods and apparatus are provided for digital linearization of an analog phase interpolator. Up to 2N desired phase values are mapped to a corresponding M bit value, where M is greater than N. A corresponding M bit value is applied to the phase interpolator to obtain a desired one of the 2N desired phase values. A linearized phase interpolator is also provided that accounts for process, voltage, temperature or aging (PVTA) variations.
    Type: Application
    Filed: March 31, 2005
    Publication date: October 5, 2006
    Inventors: Mohammad Mobin, Gregory Sheets, Lane Smith, Craig Ziemer
  • Publication number: 20060220719
    Abstract: Methods and apparatus are provided for improving phase switching and linearity in an analog phase interpolator. A phase interpolator in accordance with the present invention comprises (i) a plurality of tail current sources that are activated for substantially all times when the phase interpolator is operational; (ii) at least two pairs of input transistor devices, wherein one pair of the input transistor devices is associated with a minimum phase of the phase interpolator and another pair of the input transistor devices is associated with a maximum phase of the phase interpolator; and (iii) a plurality of current steering switches that provide currents generated by the plurality of tail current sources to one or more of the at least two pairs of input transistor devices, based on an applied interpolation control signal.
    Type: Application
    Filed: March 31, 2005
    Publication date: October 5, 2006
    Inventors: Ronald Freyman, Craig Ziemer
  • Publication number: 20060114045
    Abstract: A voltage controlled delay loop and method are disclosed for clock and data recovery applications. The voltage controlled delay loop generates clock signals having similar frequency and different phases. The voltage controlled delay loop comprises at least one delay element to generate at least two phases of a reference clock; a central interpolator for interpolating the at least two phases of the reference clock to generate an interpolated signal; and an input that injects the interpolated signal into a delay stage. The central interpolator provides a fine phase control. In addition, a coarse phase control can optionally be achieved by selectively injecting the interpolated signal into a given delay stage. A further voltage controlled delay loop is disclosed with coarse and fine phase control using a number of interpolators.
    Type: Application
    Filed: November 30, 2004
    Publication date: June 1, 2006
    Inventors: Ronald Freyman, Vladimir Sindalovsky, Lane Smith, Craig Ziemer