Patents by Inventor Creg J. Workman

Creg J. Workman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240174747
    Abstract: Regulatory T cells (Treg) limit autoimmunity but can also attenuate the magnitude of anti-pathogen and anti-tumor immunity. Understanding the mechanism of Treg function and therapeutic manipulation of Treg in vivo requires identification of Treg selective receptors. A comparative analysis of gene expression arrays from antigen specific CD4+ T cells differentiating to either an effector/memory or a regulatory phenotype revealed Treg selective expression of LAG-3 (CD223), a CD4-related molecule that binds MHC class II. LAG-3 expression on CD4+ T cells correlates with the cells' in vitro suppressor activity, and ectopic expression of LAG-3 on CD4 T cells confers suppressor activity on the T cells. Antibodies to LAG-3 inhibit suppression both in vitro and in vivo. LAG-3 marks regulatory T cell populations and contributes to their suppressor activity.
    Type: Application
    Filed: June 6, 2023
    Publication date: May 30, 2024
    Inventors: Drew M. Pardoll, Ching-Tai Huang, Jonathan Powell, Charles G. Drake, Dario A. Vignali, Creg J. Workman
  • Publication number: 20210230275
    Abstract: Combinations of anti-cancer antibodies and inhibitory antibodies to CD223 overcome immune suppression in cancer patients. The inhibitory antibodies may be generated in an animal by injection of fragments of CD223. Antibodies may be monoclonal antibodies or single chain antibodies or humanized antibodies.
    Type: Application
    Filed: January 22, 2021
    Publication date: July 29, 2021
    Inventors: Drew Pardoll, Ching-Tai Huang, Jonathan Powell, Charles G. Drake, Dario A. Vignali, Creg J. Workman
  • Patent number: 10934354
    Abstract: Combinations of anti-cancer antibodies and inhibitory antibodies to CD223 overcome immune suppression in cancer patients. The inhibitory antibodies may be generated in an animal by injection of fragments of CD223. Antibodies may be monoclonal antibodies or single chain antibodies or humanized antibodies.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: March 2, 2021
    Assignees: The Johns Hopkins University, St. Jude's Children's Research Hospital, Inc.
    Inventors: Drew M. Pardoll, Ching-Tai Huang, Jonathan Powell, Charles G. Drake, Dario A. Vignali, Creg J. Workman
  • Patent number: 10787513
    Abstract: Anti-CD223 antibodies overcome immune suppression in cancer patients. The anti-CD223 antibodies may be generated in an animal by injection of fragments of CD223. Antibodies may be monoclonal antibodies or single chain antibodies or humanized antibodies.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: September 29, 2020
    Assignees: The Johns Hopkins University, St. Jude's Children's Research Hospital, Inc.
    Inventors: Drew M. Pardoll, Ching-Tai Huang, Jonathan Powell, Charles Drake, Dario A. Vignali, Creg J. Workman
  • Publication number: 20190194324
    Abstract: Described are methods of inhibiting neurodegeneration in a subject by administering to the subject an agent that prevents (alpha)-syn PFF from binding to its receptor. The agent may be a small molecule chemical compound, antibody, nucleic acid molecule, or polypeptide. Drug screening methods are also provided.
    Type: Application
    Filed: August 22, 2017
    Publication date: June 27, 2019
    Inventors: Ted M. Dawson, Valina L. Dawson, Han Seok Ko, Xiaobo Mao, Dario Angelo Alberto Vignali, Creg J. Workman
  • Publication number: 20180251550
    Abstract: Combinations of anti-cancer antibodies and inhibitory antibodies to CD223 overcome immune suppression in cancer patients. The inhibitory antibodies may be generated in an animal by injection of fragments of CD223. Antibodies may be monoclonal antibodies or single chain antibodies or humanized antibodies.
    Type: Application
    Filed: March 30, 2018
    Publication date: September 6, 2018
    Inventors: Drew M. Pardoll, Ching-Tai Huang, Jonathan Powell, Charles G. Drake, Dario A. Vignali, Creg J. Workman
  • Publication number: 20160108121
    Abstract: Combinations of anti-cancer antibodies and inhibitory antibodies to CD223 overcome immune suppression in cancer patients. The inhibitory antibodies may be generated in an animal by injection of fragments of CD223. Antibodies may be monoclonal antibodies or single chain antibodies or humanized antibodies.
    Type: Application
    Filed: December 18, 2015
    Publication date: April 21, 2016
    Applicants: The Johns Hopkins University, St. Jude's Children's Research Hospital Inc.
    Inventors: Drew M. Pardoll, Ching-Tai Huang, Jonathan Powell, Charles Drake, Dario A. Vignali, Creg J. Workman
  • Patent number: 9005629
    Abstract: Mammals with cancer are treated with an antibody which specifically binds to CD223 protein and inhibits negative T cell regulatory function of CD223. The mammal may be a human. The antibody may be a monoclonal antibody. The amount of the antibody administered may be sufficient to enhance an immune T cell response to the cancer.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: April 14, 2015
    Assignees: St. Jude Children's Research Hospital Inc., The Johns Hopkins University
    Inventors: Drew M Pardoll, Ching-Tai Huang, Jonathan Powell, Charles Drake, Dario A Vignali, Creg J Workman
  • Publication number: 20140127226
    Abstract: Regulatory T cells (Treg) limit autoimmunity but can also attenuate the magnitude of anti-pathogen and anti-tumor immunity. Understanding the mechanism of Treg function and therapeutic manipulation of Treg in vivo requires identification of Treg selective receptors. A comparative analysis of gene expression arrays from antigen specific CD4+ T cells differentiating to either an effector/memory or a regulatory phenotype revealed Treg selective expression of LAG-3 (CD223), a CD4-related molecule that binds MHC class II. LAG-3 expression on CD4+ T cells correlates with the cells' in vitro suppressor activity, and ectopic expression of LAG-3 on CD4 T cells confers suppressor activity on the T cells. Antibodies to LAG-3 inhibit suppression both in vitro and in vivo. LAG-3 marks regulatory T cell populations and contributes to their suppressor activity.
    Type: Application
    Filed: December 13, 2013
    Publication date: May 8, 2014
    Applicants: St. Jude's Children's Research Hospital Inc., The Johns Hopkins University
    Inventors: Drew M. PARDOLL, Ching-Tai HUANG, Jonathan POWELL, Charles DRAKE, Dario A. VIGNALI, Creg J. WORKMAN
  • Patent number: 8551481
    Abstract: Regulatory T cells (Treg) limit autoimmunity but can also attenuate the magnitude of anti-pathogen and anti-tumor immunity. Understanding the mechanism of Treg function and therapeutic manipulation of Treg in vivo requires identification of Treg selective receptors. A comparative analysis of gene expression arrays from antigen specific CD4+ T cells differentiating to either an effector/memory or a regulatory phenotype revealed Treg selective expression of LAG-3 (CD223), a CD4-related molecule that binds MHC class II. LAG-3 expression on CD4+ T cells correlates with the cells' in vitro suppressor activity, and ectopic expression of LAG-3 on CD4 T cells confers suppressor activity on the T cells. Antibodies to LAG-3 inhibit suppression both in vitro and in vivo. LAG-3 marks regulatory T cell populations and contributes to their suppressor activity.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: October 8, 2013
    Assignees: The Johns Hopkins University, St. Jude Children's Research Hospital, Inc.
    Inventors: Drew M Pardoll, Ching-Tai Huang, Jonathan Powell, Charles Drake, Dario A Vignali, Creg J Workman
  • Publication number: 20100196394
    Abstract: Combinations of anti-cancer vaccines and inhibitory antibodies to CD223 overcome immune suppression in cancer patients. The vaccines may be isolated antigens, groups of antigens, or whole tumor cells. The inhibitory antibodies may be generated in an animal by injection of fragments of CD223. Antibodies may be monoclonal antibodies or single chain antibodies or humanized antibodies.
    Type: Application
    Filed: October 22, 2009
    Publication date: August 5, 2010
    Applicants: THE JOHNS HOPKINS UNIVERSITY, ST. JUDE CHILDREN'S RESEARCH HOSPITAL INC.
    Inventors: Drew M. Pardoll, Ching-Tai Huang, Dario A. Vignali, Creg J. Workman, Jonathan Powell, Charles C. Drake