Patents by Inventor Crystal M. Cunanan

Crystal M. Cunanan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9095430
    Abstract: Biomaterials with enhanced properties such as improved strength, flexibility, durability and reduced thickness are useful in the fabrication of biomedical devices, particularly those subjected to continuous or non-continuous loads where repeated flexibility and long-term durability are required. These enhanced properties can be attributed to elevated levels of elastin, altered collagen types, and other biochemical changes which contribute to these enhanced properties. Examples of devices which would be improved by use of such tissue include heart valves, including percutaneous heart valves, and vascular grafts, patches and the like. Such enhanced materials can be sourced from specific populations of animals, such as neonatal calves, or in range-fed adult cattle, or can be fabricated or created from cell populations exhibiting such properties.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: August 4, 2015
    Assignee: SOUTHERN LIGHTS VENTURES (2002) LIMITED
    Inventors: Crystal M. Cunanan, John Joseph Higgins, Saroja Nagaraj Guradzada
  • Patent number: 8236241
    Abstract: A method of treating a biological tissue including crosslinking with glutaraldehyde; immersing the biological tissue in a first solution containing glutaraldehyde and heat in the first solution to a temperature of about 50° C. for a first period of time; immersing the biological tissue in a second solution containing a mixture of a crosslinking agent, a denaturing agent and a surfactant; and immersing the biological tissue in a sterilizing solution containing glutaraldehyde and heating the sterilizing solution to a temperature of 37.5±2.5° C. for a sterilizing period of time. The method may include a terminal sterilization step in a method for fixation of biological tissues, and bioprosthetic devices may be prepared by such fixation method. The fixation method may include the steps of A) fixing the tissue, B) treating the tissue with a mixture of i) a denaturant, ii) a surfactant and iii) a crosslinking agent, C) fabricating or forming the bioprosthesis (e.g.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: August 7, 2012
    Assignee: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, Sophie Carpentier, Crystal M. Cunanan, Lillian J. Quintero, Michael N. Helmus, Christine Loshbaugh, H. Chris Sarner
  • Publication number: 20120059487
    Abstract: Biomaterials with enhanced properties such as improved strength, flexibility, durability and reduced thickness are useful in the fabrication of biomedical devices, particularly those subjected to continuous or non-continuous loads where repeated flexibility and long-term durability are required. These enhanced properties can be attributed to elevated levels of elastin, altered collagen types, and other biochemical changes which contribute to these enhanced properties. Examples of devices which would be improved by use of such tissue include heart valves, including percutaneous heart valves, and vascular grafts, patches and the like. Such enhanced materials can be sourced from specific populations of animals, such as neonatal calves, or in range-fed adult cattle, or can be fabricated or created from cell populations exhibiting such properties.
    Type: Application
    Filed: August 24, 2011
    Publication date: March 8, 2012
    Inventors: Crystal M. Cunanan, John Joseph Higgins, Saroja Nagaraj Guradzada
  • Patent number: 7989157
    Abstract: A method for processing biological tissue used in biological prostheses includes providing a tissue procurement solution formed from a phosphate buffered saline (PBS) solution and a chelating agent. The tissue is transferred from the tissue procurement solution and undergoes chemical fixation. The fixed tissue is then immersed in a series of fresh bioburden reduction process (BRP) solutions to extract phospholipids. The tissue procurement solution reduces the bioburden on the stored tissue and preserves tissue architecture by minimizing tissue swelling. The tissue procurement solution further reduces calcium from the incoming water and/or tissue, and inhibits enzymes that digest the collagen matrix. The serial immersion of the tissue in the fresh bioburden solutions ensures optimal extraction of phospholipids thereby mitigating subsequent calcification of the tissue.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: August 2, 2011
    Assignee: Medtronic, Inc.
    Inventors: Crystal M. Cunanan, Alexandro Ochoa, Ronald E. Cambron
  • Patent number: 7622276
    Abstract: A method for processing biological tissue used in biological prostheses includes providing a tissue procurement solution formed from a phosphate buffered saline (PBS) solution and a chelating agent. The tissue is transferred from the tissue procurement solution and undergoes chemical fixation. The fixed tissue is then immersed in a series of fresh bioburden reduction process (BRP) solutions to extract phospholipids. The tissue procurement solution reduces the bioburden on the stored tissue and preserves tissue architecture by minimizing tissue swelling. The tissue procurement solution further reduces calcium from the incoming water and/or tissue, and inhibits enzymes that digest the collagen matrix. The serial immersion of the tissue in the fresh bioburden solutions ensures optimal extraction of phospholipids thereby mitigating subsequent calcification of the tissue.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: November 24, 2009
    Assignee: Arbor Surgical Technologies, Inc.
    Inventors: Crystal M. Cunanan, Alexandro Ochoa, Ronald E. Cambron
  • Patent number: 7422606
    Abstract: Medical devices and methods of producing same are provided. The medical device comprising a body member and a coating on at least a portion of the body member comprising an insitu condensation product of a first electrophilically active, high molecular weight polyalkylene oxide and a second high molecular weight polyoxyalkylene derivative.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: September 9, 2008
    Assignee: Edwards Lifesciences Corporation
    Inventors: Neng S. Ung-Chhun, Richard J. Johnson, Dean Laurin, Crystal M. Cunanan
  • Publication number: 20070280994
    Abstract: Ocular tissue separation areas having a barrier region are described herein. In one embodiment, the tissue separation area can have an implant placement site configured to accept an ocular implant. The barrier region can be located about at least a portion of the periphery of the implant placement site. The barrier region can include one or more barrier structures. An example barrier structure is a channel formed on one side of the tissue separation area with a corresponding ridge formed on the opposite side. The channel/ridge structure can be configured to impede epithelial ingrowth to the implant placement site.
    Type: Application
    Filed: June 1, 2006
    Publication date: December 6, 2007
    Inventor: Crystal M. Cunanan
  • Patent number: 7214344
    Abstract: A method of treating a biological tissue including contacting the biological tissue with an aqueous sterilizing solution, and maintaining the aqueous sterilizing solution at a temperature of about 50° C. for a time period of about 1 to 2 days. The method of treating a biological tissue may be utilized as a terminal sterilization step in a method for fixation of biological tissues, and bioprosthetic devices may be prepared by such fixation method. The fixation method may include the steps of A) fixing the tissue, B) treating the tissue with a mixture of i) a denaturant, ii) a surfactant and iii) a crosslinking agent, C) fabricating or forming the bioprosthesis (e.g., forming the tissue and attaching any non-biological components thereto) and D) subjecting the bioprosthesis to the terminal sterilization method. The aqueous sterilizing solution may be glutaraldehyde of about 0.625 weight percent buffered to a pH of about 7.4.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: May 8, 2007
    Assignee: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, Sophie Carpentier, Crystal M. Cunanan, Lillian J. Quintero, Michael N. Helmus, Christine Loshbaugh, H. Chris Sarner
  • Patent number: 6991804
    Abstract: The invention provides methods for treating injuries to one or more internal structures of a subject by administering a drug delivery vehicle to an external surface of the injured structure. The drug delivery vehicle substantially adheres to the site of administration and provides for the release of a bioactive agent that reduces or prevents further injury to the internal structure by disease processes, such as hyperplasia.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: January 31, 2006
    Assignee: Edwards Lifesciences Corporation
    Inventors: Michael N. Helmus, Crystal M. Cunanan, Patrice Tremble
  • Publication number: 20040202711
    Abstract: The invention provides methods for treating injuries to one or more internal structures of a subject by administering a drug delivery vehicle to an external surface of the injured structure. The drug delivery vehicle substantially adheres to the site of administration and provides for the release of a bioactive agent that reduces or prevents further injury to the internal structure by disease processes, such as hyperplasia.
    Type: Application
    Filed: April 2, 2004
    Publication date: October 14, 2004
    Inventors: Michael N. Helmus, Crystal M. Cunanan, Patrice Tremble
  • Publication number: 20040180319
    Abstract: A method for chemical fixation of tissues by exposing the tissue to a chemical fixative agent, under oxidative conditions. The chemical fixative agents useable in this method include aldehydes (e.g., formaldehyde, glutaraldehyde, dialdehyde starch), isocyanates (e.g., hexamethylene diisocyanate) and certain polyepoxy compounds (e.g., DENACOL). The oxidative conditions may be provided by heating of a chemical fixative solution that contains the crosslinking agent, in the presence of room air or oxygen. Alternatively, the oxidative conditions may be provided by adding one or more oxidizing chemicals (e.g., hydrogen peroxide or other peroxides, sodium periodate or other periodates, diisocyanates, halogens, n-bromosuccinimide or other halogenated compounds, permanganates, ozone, chromic acid, sulfuryl chloride, sulfoxides, selenoxides, etc.) to the chemical fixative solution. Alternatively, the oxidative conditions may be provided by irradiation (e.g.
    Type: Application
    Filed: March 23, 2004
    Publication date: September 16, 2004
    Inventors: Crystal M. Cunanan, Lillian J. Quintero, Angela de la Fuente, Patrice Tremble
  • Patent number: 6783988
    Abstract: A highly sensitive and specific method for the detection and quantification of lipids is provided. Specifically, methods for the simultaneous detection and quantification of phospholipids extracted from mammalian tissues is described. The analytical methods provided disclose a modified one-dimensional thin-layer chromatography technique specifically developed to rapidly and accurantely detect and quantify phospholipids from mammalian cardiac tissues.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: August 31, 2004
    Assignee: Edwards Lifesciences Corporation
    Inventors: Tan Thanh Dinh, Patrice Tremble, Crystal M. Cunanan, Christine May Cabiling
  • Patent number: 6730313
    Abstract: The invention provides methods for treating injuries to one or more internal structures of a subject by administering a drug delivery vehicle to an external surface of the injured structure. The drug delivery vehicle substantially adheres to the site of administration and provides for the release of a bioactive agent that reduces or prevents further injury to the internal structure by disease processes, such as hyperplasia.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: May 4, 2004
    Assignee: Edwards Lifesciences Corporation
    Inventors: Michael N. Helmus, Crystal M. Cunanan, Patrice Tremble
  • Publication number: 20040068225
    Abstract: Medical devices and methods of producing same are provided. The medical device comprising a body member and a coating on at least a portion of the body member comprising an insitu condensation product of a first electrophilically active, high molecular weight polyalkylene oxide and a second high molecular weight polyoxyalkylene derivative.
    Type: Application
    Filed: October 3, 2003
    Publication date: April 8, 2004
    Inventors: Neng S. Ung-Chhun, Richard J. Johnson, Dean Laurin, Crystal M. Cunanan
  • Publication number: 20030226208
    Abstract: A method for fixation of biological tissues, and bioprosthetic devices prepared by such method. The method generally comprises the steps of A) fixing the tissue, B) treating the tissue with a mixture of i) a denaturant, ii) a surfactant and iii) a crosslinking agent, C) fabricating or forming the bioprosthesis (e.g., forming the tissue and attaching any non-biological components thereto) and D) subjecting the bioprosthesis to terminal sterilization.
    Type: Application
    Filed: January 14, 2003
    Publication date: December 11, 2003
    Inventors: Alain F. Carpentier, Sophie Carpentier, Crystal M. Cunanan, Lillian J. Quintero, Michael N. Helmus, Christine Loshbaugh, H. Chris Sarner
  • Patent number: 6656222
    Abstract: An IOL implantable in an eye comprising an optic having an optical portion for directing light toward the retina of the eye and a cell barrier portion for inhibiting cell growth from the eye in front of or in back of the optical portion. The cell barrier portion circumscribes the optical portion, is incapable of focusing light on the retina and includes an irregularly configured structure, for example, irregular grooves. At least one elongated fixation member is coupled to the optic for use in fixing the optic in the eye.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: December 2, 2003
    Assignee: Advanced Medical Optics, Inc.
    Inventors: Craig Young, Glenn R. Sussman, Crystal M. Cunanan
  • Patent number: 6648922
    Abstract: Medical devices and methods of producing same are provided. The medical device comprising a body member and a coating on at least a portion of the body member comprising an insitu condensation product of a first electrophilically active, high molecular weight polyalkylene oxide and a second high molecular weight polyoxyalkylene derivative.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: November 18, 2003
    Assignee: Baxter International Inc.
    Inventors: Neng S. Ung-Chhun, Richard J. Johnson, Dean Laurin, Crystal M. Cunanan
  • Patent number: 6547827
    Abstract: A method for fixation of biological tissues, and bioprosthetic devices prepared by such method. The method generally comprises the steps of A) fixing the tissue, B) treating the tissue with a mixture of i) a denaturant, ii) a surfactant and iii) a crosslinking agent, C) fabricating or forming the bioprosthesis (e.g., forming the tissue and attaching any non-biological components thereto) and D) subjecting the bioprosthesis to terminal sterilization.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: April 15, 2003
    Assignee: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, Sophie Carpentier, Crystal M. Cunanan, Lillian Quintero, Michael N. Helmus, Christine Loshbaugh, H. Chris Sarner
  • Publication number: 20030050276
    Abstract: The present invention provides methods of inactivating and removing infectious agents from tissues of use in bioprosthetic devices. The methods include the removal and blockage of binding sites on the tissues for the infectious agents. Also provided are methods for blocking a site on an infectious agent that binds to a site on the tissue.
    Type: Application
    Filed: August 15, 2001
    Publication date: March 13, 2003
    Inventors: Crystal M. Cunanan, Tan Thanh Dinh, Christine Loshbaugh, H. Chris Sarner, Michael N. Helmus
  • Publication number: 20030022146
    Abstract: A method for chemical fixation of tissues by exposing the tissue to a chemical fixative agent, under oxidative conditions. The chemical fixative agents useable in this method include aldehydes (e.g., formaldehyde, glutaraldehyde, dialdehyde starch), isocyanates (e.g., hexamethylene diisocyanate) and certain polyepoxy compounds (e.g., DENACOL). The oxidative conditions may be provided by heating of a chemical fixative solution that contains the crosslinking agent, in the presence of room air or oxygen. Alternatively, the oxidative conditions may be provided by adding one or more oxidizing chemicals (e.g., hydrogen peroxide or other peroxides, sodium periodate or other periodates, diisocyanates, halogens, n-bromosuccinimide or other halogenated compounds, permanganates, ozone, chromic acid, sulfuryl chloride, sulfoxides, selenoxides, etc.) to the chemical fixative solution. Alternatively, the oxidative conditions may be provided by irradiation (e.g.
    Type: Application
    Filed: July 26, 2001
    Publication date: January 30, 2003
    Inventors: Crystal M. Cunanan, Lillian J. Quintero, Angela de la Fuente, Patrice Tremble