Patents by Inventor Curtis Rahn

Curtis Rahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10151647
    Abstract: In one embodiment a pressure sensor is provided. The pressure sensor includes a housing having an input port configured to allow a media to enter the housing. A support is mounted within the housing, the support defining a first aperture extending therethrough. A stress isolation member is mounted within the first aperture of the support, the stress isolation member defining a second aperture extending therethrough, wherein the stress isolation member is composed of silicon. sensor die bonded to the stress isolation member. The sensor die includes a silicon substrate having an insulator layer on a first side of the silicon substrate; and sensing circuitry disposed in the insulator layer on the first side, wherein a second side of the silicon substrate is exposed to the second aperture of the stress isolation member and the second side is reverse of the first side.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: December 11, 2018
    Assignee: Honeywell International Inc.
    Inventors: Gregory C. Brown, Curtis Rahn
  • Publication number: 20140374846
    Abstract: In one embodiment a pressure sensor is provided. The pressure sensor includes a housing having an input port configured to allow a media to enter the housing. A support is mounted within the housing, the support defining a first aperture extending therethrough. A stress isolation member is mounted within the first aperture of the support, the stress isolation member defining a second aperture extending therethrough, wherein the stress isolation member is composed of silicon. sensor die bonded to the stress isolation member. The sensor die includes a silicon substrate having an insulator layer on a first side of the silicon substrate; and sensing circuitry disposed in the insulator layer on the first side, wherein a second side of the silicon substrate is exposed to the second aperture of the stress isolation member and the second side is reverse of the first side.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: Gregory C. Brown, Curtis Rahn
  • Patent number: 8813580
    Abstract: System and methods for silicon on insulator MEMS pressure sensors are provided. In one embodiment, a method comprises: applying a doping source to a silicon-on-insulator (SOI) silicon wafer having a sensor layer and an insulating layer comprising SiO2 material; doping the silicon wafer with Boron atoms from the doping source while controlling an injection energy of the doping to achieve a top-heavy ion penetration profile; and applying a heat source to diffuse the Boron atoms throughout the sensor layer of the SOI silicon wafer.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: August 26, 2014
    Assignee: Honeywell International Inc.
    Inventors: Gregory C. Brown, Curtis Rahn
  • Publication number: 20130228022
    Abstract: System and methods for silicon on insulator MEMS pressure sensors are provided. In one embodiment, a method comprises: applying a doping source to a silicon-on-insulator (SOI) silicon wafer having a sensor layer and an insulating layer comprising SiO2 material; doping the silicon wafer with Boron atoms from the doping source while controlling an injection energy of the doping to achieve a top-heavy ion penetration profile; and applying a heat source to diffuse the Boron atoms throughout the sensor layer of the SOI silicon wafer.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 5, 2013
    Applicant: Honeywell International Inc.
    Inventors: Gregory C. Brown, Curtis Rahn
  • Patent number: 8065917
    Abstract: A pressure sensor device for a modular pressure sensor package is provided, comprising a substrate having a pressure port that extends through the substrate from a first side of the substrate to a second side of the substrate. A pressure sensor die is attached to the first side of the substrate, forming a seal over the pressure port on the first side of the substrate. A cover is attached to the first side of the substrate over the pressure sensor die, forming a sealed cavity wherein the pressure sensor die is located within the cavity. The device also comprises a plurality of electrical connectors mounted to the substrate external to the cavity, the plurality of electrical connectors electrically coupled to the pressure sensor die. Further, the substrate includes at least one mounting element configured to secure a pressure port interface to the second side of the substrate in a position around the pressure port.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: November 29, 2011
    Assignee: Honeywell International Inc.
    Inventors: Gregory C. Brown, Thomas A. Larson, Curtis Rahn
  • Publication number: 20110283802
    Abstract: A pressure sensor device for a modular pressure sensor package is provided, comprising a substrate having a pressure port that extends through the substrate from a first side of the substrate to a second side of the substrate. A pressure sensor die is attached to the first side of the substrate, forming a seal over the pressure port on the first side of the substrate. A cover is attached to the first side of the substrate over the pressure sensor die, forming a sealed cavity wherein the pressure sensor die is located within the cavity. The device also comprises a plurality of electrical connectors mounted to the substrate external to the cavity, the plurality of electrical connectors electrically coupled to the pressure sensor die. Further, the substrate includes at least one mounting element configured to secure a pressure port interface to the second side of the substrate in a position around the pressure port.
    Type: Application
    Filed: May 18, 2010
    Publication date: November 24, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Gregory C. Brown, Thomas A. Larson, Curtis Rahn
  • Patent number: 7698951
    Abstract: A sensing apparatus for determining the pressure of a fluid includes first and second support members. The first and second support members are configured to define at least one sealed chamber. A flexible diaphragm is disposed between the first and second support members. The diaphragm includes first and second opposing surfaces. The first opposing surface is in fluid communication with a first fluid-flow circuit, and the second opposing surface is in fluid communication with a second fluid-flow circuit. A first electronic circuit is disposed within the at least one chamber and coupled to the diaphragm for sensing a first differential pressure associated with the first and second flow circuits. The first electronic circuit is configured to produce at least one electrical signal proportional to a magnitude of the first differential pressure.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: April 20, 2010
    Assignee: Honeywell International Inc.
    Inventors: Gregory C. Brown, Curtis Rahn
  • Publication number: 20090293628
    Abstract: A sensing apparatus for determining the pressure of a fluid includes first and second support members. The first and second support members are configured to define at least one sealed chamber. A flexible diaphragm is disposed between the first and second support members. The diaphragm includes first and second opposing surfaces. The first opposing surface is in fluid communication with a first fluid-flow circuit, and the second opposing surface is in fluid communication with a second fluid-flow circuit. A first electronic circuit is disposed within the at least one chamber and coupled to the diaphragm for sensing a first differential pressure associated with the first and second flow circuits. The first electronic circuit is configured to produce at least one electrical signal proportional to a magnitude of the first differential pressure.
    Type: Application
    Filed: May 27, 2008
    Publication date: December 3, 2009
    Applicant: Honeywell International Inc.
    Inventors: Gregory C. Brown, Curtis Rahn
  • Publication number: 20070243654
    Abstract: A microelectromechanical device and method of fabricating the same, including a layer of patterned and deposited metal or mechanical-quality, doped polysilicon inserted between the appropriate device element layers, which provides a conductive layer to prevent the microelectromechanical device's output from drifting. The conductive layer may encapsulate of the device's sensing or active elements, or may selectively cover only certain of the device's elements. Further, coupling the metal or mechanical-quality, doped polysilicon to the same voltage source as the device's substrate contact may place the conductive layer at the voltage of the substrate, which may function as a Faraday shield, attracting undesired, migrating ions from interfering with the output of the device.
    Type: Application
    Filed: September 28, 2005
    Publication date: October 18, 2007
    Applicant: Honeywell International Inc.
    Inventors: Thomas Stratton, Gary Gardner, Curtis Rahn
  • Publication number: 20070164379
    Abstract: A method of electrically isolating a MEMS device is provided. In one example, a piezo-resistive pressure sensor having an exposed silicon region undergoes a Local Oxidation of Silicon (LOCOS) process. An electrically insulating structure is created in the LOCOS process. The insulating structure has a rounded, or curved, interface with the piezo-resistive pressure sensor. The curved interface mitigates stresses associated with exposure to high temperatures and pressures. Additionally, the electrically insulating line may be patterned so that it has curved angles, further mitigating stress.
    Type: Application
    Filed: January 17, 2006
    Publication date: July 19, 2007
    Applicant: Honeywell International Inc.
    Inventors: Gregory Brown, Curtis Rahn
  • Publication number: 20070111355
    Abstract: A method of forming a piezo-resistive sensor, comprising a piezo-resistor, a leadout resistor, and an insulator structure is provided. A Silicon-On-Insulator (SOI) substrate is provided having an epitaxial layer, a dielectric layer, and a bulk substrate layer. A mask layer is formed on top of the epitaxial layer. The mask layer defines where the piezo-resistor and leadout resistors are to be located by creating first exposed portions of the epitaxial layer. A silicon dioxide layer (SiO2) is grown in a Local Oxidation of Silicon (LOCOS) process for a predetermined time on the first exposed portions based on the desired thickness of the piezo-resistor, where the-piezo resistor is located below the SiO2 layer. The thickness of the leadout resistor, and therefore the parasitic leadout resistance, is determined by the original thickness of the epitaxial layer and can be maintained independent of the piezo-resistor thickness.
    Type: Application
    Filed: October 31, 2005
    Publication date: May 17, 2007
    Applicant: Honeywell International Inc.
    Inventors: Russell Johnson, Curtis Rahn