Patents by Inventor Cynthia T. Clague

Cynthia T. Clague has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7909762
    Abstract: The invention provides a system and method for harvesting a vessel section. The system comprises an endoscope, at least one harvesting tool, and an elongated instrument comprising a shaft and a housing. The shaft includes a viewable region along a length of the shaft and a lumen to slidably receive the endoscope. The housing is releasably engaged with the shaft and includes an elongated opening to provide a working area adjacent to a vessel for the harvesting tool. The method includes making an incision at a point corresponding to the proximal end of the vessel section to be harvested. A shaft is inserted through the incision and adjacent to the vessel section. A housing is slidably engaged with the inserted shaft. Harvesting operations are performed in a working area defined by sidewalls of the housing. The harvesting operations are visually monitored through the shaft.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: March 22, 2011
    Assignee: Medtronic, Inc.
    Inventors: Raymond W. Usher, Cynthia T. Clague
  • Publication number: 20110054466
    Abstract: An ablation catheter including an inner tube having a length, a distal end and a longitudinal axis, a plurality of needles extending from the distal end of the inner tube and biased away from the longitudinal axis, an outer sheath slideably moveable relative to the inner tube to surround at least a portion of the length of the inner tube and its extending needles, and a radio frequency energy source electrically connected to the plurality of needles.
    Type: Application
    Filed: April 30, 2010
    Publication date: March 3, 2011
    Applicant: Medtronic, Inc.
    Inventors: Paul T. Rothstein, Cathleen A. Bergin, Cynthia T. Clague, Michael M. Green, Alexander J. Hill, James R. Keogh, Timothy G. Laske
  • Patent number: 7762951
    Abstract: The invention provides a system and method for harvesting a vessel section. The system includes an endoscope, at least one harvesting tool, and an elongated instrument including a shaft and a housing. The shaft includes a viewable region along a length of the shaft and a lumen to slidably receive the endoscope. The housing is releasably engaged with the shaft and includes an elongated opening to provide a working area adjacent to a vessel for the harvesting tool. The method includes making an incision at a point corresponding to the proximal end of the vessel section to be harvested. A shaft is inserted through the incision and adjacent to the vessel section. A housing is slidably engaged with the inserted shaft. Harvesting operations are performed in a working area defined by sidewalls of the housing. The harvesting operations are visually monitored through the shaft.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: July 27, 2010
    Assignee: Medtronic, Inc.
    Inventors: Raymond W. Usher, Cynthia T. Clague
  • Publication number: 20100174281
    Abstract: A device for temporarily sealing an opening in a blood vessel is provided. The device comprises a cutting mechanism for creating an opening in a blood vessel and a seal for sealing the opening in the blood vessel. The seal is delivered through an inner lumen of a tool body coupled to the cutting mechanism. Methods for using the device to construct an anastomosis between two vessels are also provided.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 8, 2010
    Inventors: Scott E. Jahns, James R. Keogh, Paul A. Pignato, Christopher P. Olig, Karen P. Montpetit, Cynthia T. Clague, Raymond W. Usher, Philip J. Haarstad, Gary W. Guenst
  • Publication number: 20100121362
    Abstract: Embodiments of the invention provide a vessel support system and a method of vessel harvesting. The system can include a cutting device, a catheter adapted to be inserted into a section of the vessel in order to support the vessel as the cutting device is advanced over the vessel, and a cannula adapted to be coupled to the vessel and adapted to receive the catheter as the catheter is inserted into the section of the vessel. The method can include orienting a cutting device coaxially with the cannula and the catheter and advancing the cutting device over the cannula, the catheter, and the section of the vessel in order to core out the section of the vessel and a portion of the surrounding tissue.
    Type: Application
    Filed: January 19, 2010
    Publication date: May 13, 2010
    Applicant: SCOTTSDALE MEDICAL DEVICES, INC.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Publication number: 20100114136
    Abstract: Embodiments of the invention provide a cutting device and method of vessel harvesting. The cutting device can include at least one tubular member, a cutting element, and a centering member. The cutting device can include at least one tubular member with a flexible section and a cutting element. The method of vessel harvesting can include spacing a cutting element of the cutting device from the vessel as the cutting element is advanced over the vessel.
    Type: Application
    Filed: January 15, 2010
    Publication date: May 6, 2010
    Applicant: SCOTTSDALE MEDICAL DEVICES, INC.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Publication number: 20090222026
    Abstract: A surgical fastener clip for proximating tissue, the clip providing an undeflected state in which the clip comprises a center portion, a first leg, and a second leg. The center portion has a perimeter defining a circle-like shape. The legs project outwardly relative to the perimeter from a point of departure to a tip. Extension of each of the legs relative to the perimeter defines an identical wind direction that is either clockwise or counterclockwise. The clip optionally includes a linear cross-member extending across the perimeter. The surgical clip can be formed by a wire that is partially wound onto itself in a spiral-like fashion, with the center portion and the legs being co-planar in the undeflected state. During use, the clip is rotated, drawing tissue into the center portion. Systems incorporating the clip are also provided.
    Type: Application
    Filed: February 28, 2008
    Publication date: September 3, 2009
    Inventors: Paul T. Rothstein, Cynthia T. Clague, Michael M. Green, Damian A. Jelich, Eric A. Meyer, Mark T. Stewart, Chris M. Coppin, Rany Huynh, Mark W. Torrianni, Asha S. Nayak, John R. Liddicoat, Timothy G. Laske
  • Publication number: 20090137900
    Abstract: Methods and apparatus employed to locate body vessels and occlusions in body vessels finding particular utility in cardiac surgery, particularly minimally invasive cardiac surgery to locate cardiac arteries and occlusions in cardiac arteries are disclosed. An elongated vessel lumen probe incorporating a lumen probe element at or near the elongated vessel lumen probe distal end is advanced into the vessel lumen. A vessel surface probe manipulated by the surgeon and having a surface probe element sensor is employed to detect the lumen probe element and to follow the progress of the vessel lumen probe element as it approaches and is advanced through or is blocked by an occlusion. In the location of a coronary artery, the surface probe element sensor is moved about against the epicardium over the suspected location of the artery of interest until a surface probe element sensor of the present invention at the surface probe distal end interacts with the lumen probe element of the vessel lumen probe.
    Type: Application
    Filed: January 30, 2009
    Publication date: May 28, 2009
    Applicant: Medtronic, Inc.
    Inventors: Mathew D. Bonner, Cynthia T. Clague, Scott E. Jahns, James R. Keogh
  • Patent number: 7493154
    Abstract: Methods and apparatus employed to locate body vessels and occlusions in body vessels finding particular utility in cardiac surgery, particularly minimally invasive cardiac surgery to locate cardiac arteries and occlusions in cardiac arteries are disclosed. An elongated vessel lumen probe incorporating a lumen probe element at or near the elongated vessel lumen probe distal end is advanced into the vessel lumen. A vessel surface probe manipulated by the surgeon and having a surface probe element sensor is employed to detect the lumen probe element and to follow the progress of the vessel lumen probe element as it approaches and is advanced through or is blocked by an occlusion. In the location of a coronary artery, the surface probe element sensor is moved about against the epicardium over the suspected location of the artery of interest until a surface probe element sensor of the present invention at the surface probe distal end interacts with the lumen probe element of the vessel lumen probe.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: February 17, 2009
    Assignee: Medtronic, Inc.
    Inventors: Matthew D. Bonner, Cynthia T. Clague, Scott E. Jahns, James R. Keogh
  • Patent number: 7439069
    Abstract: A system and method for determining a coagulation time, e.g., thrombin time, PT, aPTT, and ACT, of a blood sample deposited in a test cartridge is disclosed. The test cartridge includes a blood receptacle that is open to the atmosphere into which a blood sample is to be deposited, a vacuum port that is open to atmosphere, and a spiral capillary within the test cartridge having a capillary length and cross-section area, a first capillary end of the spiral capillary open to the blood receptacle and a second capillary end of the spiral capillary open to the vacuum port, whereby the spiral capillary is closed to atmosphere. When a blood sample is deposited in the blood receptacle, a vacuum is drawn through the vacuum port and the blood is drawn through the spiral capillary until coagulation occurs. A pressure change is detected, and the coagulation time is measured.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: October 21, 2008
    Inventors: Douglas D. Nippoldt, Cynthia T. Clague, Daniel G. Ericson
  • Patent number: 7422905
    Abstract: A system and method for determining a coagulation time, e.g., TT, PT, aPTT, and ACT, of a test sample deposited in a test cartridge is disclosed. A cartridge housing having upper and lower major sides and a minor sidewall encloses a test chamber having a test chamber pivot element and is provided with a cartridge port for introducing a test sample into the test chamber. Ferromagnetic agitator vane leaflets extend from an agitator pivot element supported by the test chamber pivot element intermediate the upper and lower major sides for rotational motion. The agitator vane leaflets can be swept, in response to an external magnetic field, through the test sample in the absence of coagulation. A timer is started when the agitator movement is commenced whereupon the agitator moves freely. Resistance to agitator movement due to coagulation is detected, and the coagulation time is measured.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: September 9, 2008
    Assignee: Medtronic, Inc.
    Inventors: Cynthia T. Clague, Daniel S. Cheek, Douglas D. Nippoldt
  • Publication number: 20080167669
    Abstract: Embodiments of the invention provide a vessel tensioning handle and method of placing tension on a section of a vessel being harvested. The handle can include a housing, a bobbin assembly, a vessel tensioning tape, and a tensioning device member. The tensioning device member can be coupled to a cannula that is coupled to the vessel. The method can include using the vessel tensioning tape to place tension on the section of the vessel as the cutting device is advanced over the vessel.
    Type: Application
    Filed: October 16, 2007
    Publication date: July 10, 2008
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Publication number: 20080161841
    Abstract: Embodiments of the invention provide a cutting device and method of vessel harvesting. The cutting device can include at least one tubular member, a cutting element, and a centering member. The cutting device can include at least one tubular member with a flexible section and a cutting element. The method of vessel harvesting can include spacing a cutting element of the cutting device from the vessel as the cutting element is advanced over the vessel.
    Type: Application
    Filed: October 16, 2007
    Publication date: July 3, 2008
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Publication number: 20080161843
    Abstract: Embodiments of the invention provide a vessel support system and a method of vessel harvesting. The system can include a cutting device, a catheter adapted to be inserted into a section of the vessel in order to support the vessel as the cutting device is advanced over the vessel, and a cannula adapted to be coupled to the vessel and adapted to receive the catheter as the catheter is inserted into the section of the vessel. The method can include orienting a cutting device coaxially with the cannula and the catheter and advancing the cutting device over the cannula, the catheter, and the section of the vessel in order to core out the section of the vessel and a portion of the surrounding tissue.
    Type: Application
    Filed: October 16, 2007
    Publication date: July 3, 2008
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Patent number: 7189231
    Abstract: Methods and apparatus employed in surgery involving making precise incisions in vessels of the body, particularly cardiac blood vessels in coronary revascularization procedures conducted on the stopped or beating heart are disclosed. Such incisions are created by applying an elongated electrosurgical cutting electrode to the outer surface of the vessel wall in substantially parallel alignment with the body vessel axis, the elongated electrosurgical cutting electrode having a predetermined cutting electrode length exceeding the cutting electrode width. RF energy is applied between the electrosurgical cutting electrode and the ground electrode at an energy level and for a duration sufficient to cut an elongated slit through the vessel wall where the elongated electrosurgical cutting electrode is applied to the surface of the vessel wall.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: March 13, 2007
    Assignee: Medtronic, Inc.
    Inventors: Cynthia T. Clague, Philip J. Haarstad, Scott E. Jahns, James R. Keogh, Christopher P. Olig, Raymond W. Usher
  • Patent number: 6960209
    Abstract: Methods and apparatus employed in surgery involving making precise incisions in vessels of the body, particularly cardiac blood vessels in coronary revascularization procedures conducted on the stopped or beating heart are disclosed. Such incisions are created by applying an elongated electrosurgical cutting electrode to the outer surface of the vessel wall in substantially parallel alignment with the body vessel axis, the elongated electrosurgical cutting electrode having a predetermined cutting electrode length exceeding the cutting electrode width. RF energy is applied between the electrosurgical cutting electrode and the ground electrode at an energy level and for a duration sufficient to cut an elongated slit through the vessel wall where the elongated electrosurgical cutting electrode is applied to the surface of the vessel wall.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: November 1, 2005
    Assignee: Medtronic, Inc.
    Inventors: Cynthia T. Clague, Philip J. Haarstad, Scott E. Jahns, James R. Keogh, Christopher P. Olig, Raymond W. Usher
  • Publication number: 20040138685
    Abstract: Methods and apparatus employed in surgery involving making precise incisions through body vessel walls, particularly coronary arteries. A body vessel cutting instrument comprises an elongated instrument shaft extending between a shaft proximal end adapted to be manipulated outside the patient's body and a shaft distal end and having a shaft axis and first and second cutting blades supported at the shaft distal end. The first cutting blade extends substantially orthogonally or laterally to the shaft axis and has a first cutting edge extending along a trailing side, a cutting tip at the first cutting blade free end, and an atraumatic blunt surface along the leading side. The second cutting blade has a second cutting edge extending along a leading side, whereby the first and second cutting edges face one another and are brought together to slit a vessel wall.
    Type: Application
    Filed: October 27, 2003
    Publication date: July 15, 2004
    Inventors: Cynthia T. Clague, Scott E. Jahns, Paul T. Rothstein, Thomas P. Daigle, Raymond W. Usher
  • Publication number: 20040082850
    Abstract: Methods and apparatus employed to locate body vessels and occlusions in body vessels finding particular utility in cardiac surgery, particularly minimally invasive cardiac surgery to locate cardiac arteries and occlusions in cardiac arteries are disclosed. An elongated vessel lumen probe incorporating a lumen probe element at or near the elongated vessel lumen probe distal end is advanced into the vessel lumen. A vessel surface probe manipulated by the surgeon and having a surface probe element sensor is employed to detect the lumen probe element and to follow the progress of the vessel lumen probe element as it approaches and is advanced through or is blocked by an occlusion. In the location of a coronary artery, the surface probe element sensor is moved about against the epicardium over the suspected location of the artery of interest until a surface probe element sensor of the present invention at the surface probe distal end interacts with the lumen probe element of the vessel lumen probe.
    Type: Application
    Filed: October 23, 2002
    Publication date: April 29, 2004
    Applicant: Medtonic, Inc.
    Inventors: Matthew D. Bonner, Cynthia T. Clague, Scott E. Jahns, James R. Keogh
  • Publication number: 20040082945
    Abstract: Methods and apparatus employed in surgery involving making precise incisions in vessels of the body, particularly cardiac blood vessels in coronary revascularization procedures conducted on the stopped or beating heart are disclosed. Such incisions are created by applying an elongated electrosurgical cutting electrode to the outer surface of the vessel wall in substantially parallel alignment with the body vessel axis, the elongated electrosurgical cutting electrode having a predetermined cutting electrode length exceeding the cutting electrode width. RF energy is applied between the electrosurgical cutting electrode and the ground electrode at an energy level and for a duration sufficient to cut an elongated slit through the vessel wall where the elongated electrosurgical cutting electrode is applied to the surface of the vessel wall.
    Type: Application
    Filed: October 23, 2002
    Publication date: April 29, 2004
    Applicant: Medtronic, Inc.
    Inventors: Cynthia T. Clague, Philip J. Haarstad, Scott E. Jahns, James R. Keogh, Christopher P. Olig, Raymond W. Usher
  • Patent number: 6293752
    Abstract: A biological fluid transport device comprises a cutwater at the junction of at least two blood flow paths. The cutwater is substantially straight, substantially vertical, or both. At least one of the fluid paths may be tubular, and in some embodiments all of the fluid paths are tubular. The shear sensitive fluid may be, without limitation, blood, blood-based combinations, cell culture media, cell suspensions, proteins, and microcapsule suspensions. The device may be part of an extracorporeal circuit (e.g., blood during heart-lung bypass procedures or blood processing), but it need not be. Preferred embodiments of the device include, without limitation, kinetic pumps, mass transfer devices, filters, reservoirs, and heat exchangers.
    Type: Grant
    Filed: March 9, 1999
    Date of Patent: September 25, 2001
    Inventors: Cynthia T. Clague, Frank D. Dorman, Robert C. Hamlen, Donald W. Hegeman, III, Timothy A. Miller, Joseph E. Poissant, Richard T. Stone, Michael P Sullivan