Patents by Inventor Cyprian Emeka Uzoh

Cyprian Emeka Uzoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230420313
    Abstract: Representative implementations of techniques and devices provide seals for sealing the joints of bonded microelectronic devices as well as bonded and sealed microelectronic assemblies. Seals are disposed at joined surfaces of stacked dies and wafers to seal the joined surfaces. The seals may be disposed at an exterior periphery of the bonded microelectronic devices or disposed within the periphery using the various techniques.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Rajesh Katkar, Liang Wang, Cyprian Emeka Uzoh, Shaowu Huang, Guilian Gao, Ilyas Mohammed
  • Patent number: 11855064
    Abstract: Representative techniques provide process steps for forming a microelectronic assembly, including preparing microelectronic components such as dies, wafers, substrates, and the like, for bonding. One or more surfaces of the microelectronic components are formed and prepared as bonding surfaces. The microelectronic components are stacked and bonded without adhesive at the prepared bonding surfaces.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: December 26, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Cyprian Emeka Uzoh, Laura Wills Mirkarimi, Guilian Gao, Gaius Gillman Fountain, Jr.
  • Patent number: 11837596
    Abstract: In various embodiments, a method for forming a bonded structure is disclosed. The method can comprise mounting a first integrated device die to a carrier. After mounting, the first integrated device die can be thinned. The method can include providing a first layer on an exposed surface of the first integrated device die. At least a portion of the first layer can be removed. A second integrated device die can be directly bonded to the first integrated device die without an intervening adhesive.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: December 5, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Cyprian Emeka Uzoh, Arkalgud R. Sitaram, Paul Enquist
  • Patent number: 11837582
    Abstract: Dies and/or wafers are stacked and bonded in various arrangements including stacks, and may be covered with a molding to facilitate handling, packaging, and the like. In various examples, the molding may cover more or less of a stack, to facilitate connectivity with the devices of the stack, to enhance thermal management, and so forth.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: December 5, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Guilian Gao, Cyprian Emeka Uzoh, Jeremy Alfred Theil, Belgacem Haba, Rajesh Katkar
  • Publication number: 20230369136
    Abstract: The disclosed technology relates to methods for forming and/or validating bonding surfaces of integrated device dies mounted on a dicing tape, and dicing tapes used thereof. In some embodiments, such a method for forming and validating a microelectronic assembly may include mounting a substrate to a dicing tape; singulating the substrate while the substrate is mounted to the dicing tape to form a plurality of dies; and validating a bonding surface of at least one die of the plurality of dies while the at least one die is mounted to the dicing tape. In some embodiments, such a dicing tape may include an anti-static adhesive layer arranged on an anti-static base film.
    Type: Application
    Filed: May 13, 2022
    Publication date: November 16, 2023
    Inventors: Cyprian Emeka Uzoh, Oliver Zhao
  • Publication number: 20230361074
    Abstract: A method for forming a bonded structure is disclosed. The method can include providing a first element having a first non-conductive region and a first conductive feature, providing a second element having a second non-conductive region and a second conductive feature, bonding the first non-conductive region to the second non-conductive region, and imparting mechanical stress to at least one of the first conductive feature and the second conductive feature. When bonding the first non-conductive region to the second non-conductive region, the first conductive feature and the second conductive feature are spaced apart by a gap. Imparting mechanical stress to the at least one of the first conductive feature and the second conductive feature reduces the gap between the first and second conductive features. The method can include annealing the first and second elements while imparting the mechanical stress to the at least one of the first conductive feature and the second conductive feature.
    Type: Application
    Filed: May 5, 2023
    Publication date: November 9, 2023
    Inventors: Cyprian Emeka Uzoh, Jeremy Alfred Theil, Thomas Workman, Belgacem Haba
  • Publication number: 20230360968
    Abstract: Representative implementations of techniques and devices are used to reduce or prevent conductive material diffusion into insulating or dielectric material of bonded substrates. Misaligned conductive structures can come into direct contact with a dielectric portion of the substrates due to overlap, especially while employing direct bonding techniques. A barrier interface that can inhibit the diffusion is disposed generally between the conductive material and the dielectric at the overlap.
    Type: Application
    Filed: April 10, 2023
    Publication date: November 9, 2023
    Inventors: Rajesh Katkar, Cyprian Emeka Uzoh
  • Publication number: 20230343734
    Abstract: An element, a bonded structure including the element, and a method forming the element and the bonded structure are disclosed. The element can include a non-conductive region having a cavity. The element can include a conductive feature formed in the cavity. The conductive feature includes a center portion and an edge portion having first and second coefficients of thermal expansion respectively. The center and edge portions are recessed relative to a contact surface of the non-conductive region by a first depth and a second depth respectively. The first coefficient of thermal expansion can be at least 5% greater than the second coefficient of thermal expansion. The bonded structure can include the element and a second element having a second non-conductive region and a second conductive feature. A conductive interface between the first and second conductive features has a center region and an edge region.
    Type: Application
    Filed: April 21, 2023
    Publication date: October 26, 2023
    Inventors: Cyprian Emeka UZOH, Oliver ZHAO, Bongsub LEE, Laura Wills MIRKARIMI, Dominik SUWITO
  • Publication number: 20230335531
    Abstract: A method of making an assembly can include juxtaposing a top surface of a first electrically conductive element at a first surface of a first substrate with a top surface of a second electrically conductive element at a major surface of a second substrate. One of: the top surface of the first conductive element can be recessed below the first surface, or the top surface of the second conductive element can be recessed below the major surface. Electrically conductive nanoparticles can be disposed between the top surfaces of the first and second conductive elements. The conductive nanoparticles can have long dimensions smaller than 100 nanometers. The method can also include elevating a temperature at least at interfaces of the juxtaposed first and second conductive elements to a joining temperature at which the conductive nanoparticles can cause metallurgical joints to form between the juxtaposed first and second conductive elements.
    Type: Application
    Filed: December 22, 2022
    Publication date: October 19, 2023
    Inventor: Cyprian Emeka Uzoh
  • Publication number: 20230317703
    Abstract: Direct-bonded LED arrays and applications are provided. An example process fabricates a LED structure that includes coplanar electrical contacts for p-type and n-type semiconductors of the LED structure on a flat bonding interface surface of the LED structure. The coplanar electrical contacts of the flat bonding interface surface are direct-bonded to electrical contacts of a driver circuit for the LED structure. In a wafer-level process, micro-LED structures are fabricated on a first wafer, including coplanar electrical contacts for p-type and n-type semiconductors of the LED structures on the flat bonding interface surfaces of the wafer. At least the coplanar electrical contacts of the flat bonding interface are direct-bonded to electrical contacts of CMOS driver circuits on a second wafer.
    Type: Application
    Filed: June 6, 2023
    Publication date: October 5, 2023
    Inventors: Min Tao, Liang Wang, Rajesh Katkar, Cyprian Emeka Uzoh
  • Publication number: 20230299029
    Abstract: An element and a bonded structure including the element are disclosed. The element can include a non-conductive region having a cavity extending at least partially through a thickness of the non-conductive region from the contact surface, and a contact feature formed in the cavity. The non-conductive region is configured to directly bond to a non-conductive region of a second element. The contact pad of the element is configured to directly bond to a contact pad of the second element. The contact pad can include a first conductive material and a second conductive material. The first conductive material can have a unit cell size greater than a unit cell size of the second conductive material. The first conductive material can be a metal alloying material. The first conductive material can be a metal silicide and the second conductive material can be a metal.
    Type: Application
    Filed: March 14, 2023
    Publication date: September 21, 2023
    Inventors: Jeremy Alfred Theil, Thomas Workman, Cyprian Emeka Uzoh, Jesus Perez, Pawel Mrozek
  • Patent number: 11764189
    Abstract: Dies and/or wafers are stacked and bonded in various arrangements including stacks, and may be covered with a molding to facilitate handling, packaging, and the like. In various examples, the molding may cover more or less of a stack, to facilitate connectivity with the devices of the stack, to enhance thermal management, and so forth.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: September 19, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Guilian Gao, Cyprian Emeka Uzoh, Jeremy Alfred Theil, Belgacem Haba, Rajesh Katkar
  • Patent number: 11756880
    Abstract: Representative techniques and devices, including process steps may be employed to mitigate undesired dishing in conductive interconnect structures and erosion of dielectric bonding surfaces. For example, an embedded layer may be added to the dished or eroded surface to eliminate unwanted dishing or voids and to form a planar bonding surface. Additional techniques and devices, including process steps may be employed to form desired openings in conductive interconnect structures, where the openings can have a predetermined or desired volume relative to the volume of conductive material of the interconnect structures. Each of these techniques, devices, and processes can provide for the use of larger diameter, larger volume, or mixed-sized conductive interconnect structures at the bonding surface of bonded dies and wafers.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: September 12, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Cyprian Emeka Uzoh, Gaius Gillman Fountain, Jr., Jeremy Alfred Theil
  • Publication number: 20230282610
    Abstract: Representative implementations of techniques and methods include processing singulated dies in preparation for bonding. A plurality of semiconductor die components may be singulated from a wafer component, the semiconductor die components each having a substantially planar surface. Particles and shards of material may be removed from edges of the plurality of semiconductor die component. Additionally, one or more of the plurality of semiconductor die components may be bonded to a prepared bonding surface, via the substantially planar surface.
    Type: Application
    Filed: December 29, 2022
    Publication date: September 7, 2023
    Inventors: Cyprian Emeka Uzoh, Guilian Gao, Laura Wills Mirkarimi, Gaius Gillman Fountain, JR.
  • Patent number: 11749645
    Abstract: Representative techniques and devices including process steps may be employed to mitigate the potential for delamination of bonded microelectronic substrates due to metal expansion at a bonding interface. For example, a through-silicon via (TSV) may be disposed through at least one of the microelectronic substrates. The TSV is exposed at the bonding interface of the substrate and functions as a contact surface for direct bonding.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: September 5, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Guilian Gao, Bongsub Lee, Gaius Gillman Fountain, Jr., Cyprian Emeka Uzoh, Belgacem Haba, Laura Wills Mirkarimi, Rajesh Katkar
  • Patent number: 11742315
    Abstract: Representative implementations provide techniques and systems for processing integrated circuit (IC) dies. Dies being prepared for intimate surface bonding (to other dies, to substrates, to another surface, etc.) may be processed with a minimum of handling, to prevent contamination of the surfaces or the edges of the dies. The techniques include processing dies while the dies are on a dicing sheet or other device processing film or surface. Systems include integrated cleaning components arranged to perform multiple cleaning processes simultaneously.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: August 29, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventor: Cyprian Emeka Uzoh
  • Patent number: 11742314
    Abstract: Reliable hybrid bonded apparatuses are provided. An example process cleans nanoparticles from at least the smooth oxide top layer of a surface to be hybrid bonded after the surface has already been activated for the hybrid bonding. Conventionally, such an operation is discouraged. However, the example cleaning processes described herein increase the electrical reliability of microelectronic devices. Extraneous metal nanoparticles can enable undesirable current and signal leakage from finely spaced traces, especially at higher voltages with ultra-fine trace pitches. In the example process, the extraneous nanoparticles may be both physically removed and/or dissolved without detriment to the activated bonding surface.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: August 29, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Cyprian Emeka Uzoh, Pawel Mrozek
  • Publication number: 20230268308
    Abstract: Representative implementations of techniques and methods include chemical mechanical polishing for hybrid bonding. The disclosed methods include depositing and patterning a dielectric layer on a substrate to form openings in the dielectric layer, depositing a barrier layer over the dielectric layer and within a first portion of the openings, and depositing a conductive structure over the barrier layer and within a second portion of the openings not occupied by the barrier layer, at least a portion of the conductive structure in the second portion of the openings coupled or contacting electrical circuitry within the substrate. Additionally, the conductive structure is polished to reveal portions of the barrier layer deposited over the dielectric layer and not in the second portion of the openings. Further, the barrier layer is polished with a selective polish to reveal a bonding surface on or at the dielectric layer.
    Type: Application
    Filed: December 16, 2022
    Publication date: August 24, 2023
    Inventors: Gaius Gillman Fountain, JR., Chandrasekhar Mandalapu, Cyprian Emeka Uzoh, Jeremy Alfred Theil
  • Publication number: 20230268307
    Abstract: Devices and techniques including process steps make use of recesses in conductive interconnect structures to form reliable low temperature metallic bonds. A fill layer is deposited into the recesses prior to bonding. First conductive interconnect structures are bonded at ambient temperatures to second metallic interconnect structures using direct bonding techniques, with the fill layers in the recesses in one or both of the first and second interconnect structures.
    Type: Application
    Filed: November 23, 2022
    Publication date: August 24, 2023
    Inventors: Cyprian Emeka Uzoh, Jeremy Alfred Theil, Liang Wang, Rajesh Katkar, Guilian Gao, Laura Wills Mirkarimi
  • Publication number: 20230268300
    Abstract: A bonded structure can include a carrier including a first conductive contact and a second conductive contact, a first singulated element including a third conductive contact directly bonded to the first conductive contact without an adhesive, and a second singulated element including a fourth conductive contact directly bonded to the second conductive contact without an adhesive, wherein the first and second conductive contacts are spaced apart by a contact spacing of no more than 250 microns.
    Type: Application
    Filed: February 23, 2023
    Publication date: August 24, 2023
    Inventors: Cyprian Emeka Uzoh, Rajesh Katkar, Thomas Workman, Gaius Gillman Fountain, Jr., Guilian Gao, Jeremy Alfred Theil, Gabriel Z. Guevara, Kyong-Mo Bang, Laura Wills Mirkarimi