Patents by Inventor Dacong Weng

Dacong Weng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050130007
    Abstract: This invention is an improved fuel cell design for use at low pressure. The invention has a reduced number of component parts to reduce fabrication costs, as well as a simpler design that permits the size of the system to be reduced at the same time as performance is being improved. In the present design, an adjacent anode and cathode pair are fabricated using a common conductive element, with that conductive element serving to conduct the current from one cell to the adjacent one. This produces a small and simple system suitable for operating with gas fuels or alternatively directly with liquid fuels, such as methanol, dimethoxymethane, or trimethoxymethane. The use of these liquid fuels permits the storage of more energy in less volume while at the same time eliminating the need for handling compressed gases which further simplifies the fuel cell system.
    Type: Application
    Filed: November 8, 2004
    Publication date: June 16, 2005
    Inventors: Alan Cisar, Dacong Weng, Oliver Murphy
  • Patent number: 6852437
    Abstract: This invention is an improved fuel cell design for use at low pressure. The invention has a reduced number of component parts to reduce fabrication costs, as well as a simpler design that permits the size of the system to be reduced at the same time as performance is being improved. In the present design, an adjacent anode and cathode pair are fabricated using a common conductive element, with that conductive element serving to conduct the current from one cell to the adjacent one. This produces a small and simple system suitable for operating with gas fuels or alternatively directly with liquid fuels, such as methanol, dimethoxymethane, or trimethoxymethane. The use of these liquid fuels permits the storage of more energy in less volume while at the same time eliminating the need for handling compressed gases which further simplifies the fuel cell system.
    Type: Grant
    Filed: May 18, 2002
    Date of Patent: February 8, 2005
    Assignee: Lynntech, Inc.
    Inventors: Alan Cisar, Dacong Weng, Oliver J. Murphy
  • Patent number: 6733913
    Abstract: This invention is an improved fuel cell design for use at low pressure. The invention has a reduced number of component parts to reduce fabrication costs, as well as a simpler design that permits the size of the system to be reduced at the same time as performance is being improved. In the present design, an adjacent anode and cathode pair are fabricated using a common conductive element, with that conductive element serving to conduct the current from one cell to the adjacent one. This produces a small and simple system suitable for operating with gas fuels or alternatively directly with liquid fuels, such as methanol, dimethoxymethane, or trimethoxymethane. The use of these liquid fuels permits the storage of more energy in less volume while at the same time eliminating the need for handling compressed gases which further simplifies the fuel cell system.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: May 11, 2004
    Assignee: Lynntech, Inc.
    Inventors: Alan J. Cisar, Dacong Weng, Oliver J. Murphy
  • Publication number: 20030170528
    Abstract: A flowfield plate for an electrochemical cell includes a plenum in fluid connection with a reactant fluid inlet and flow channels in fluid connection with a fluid outlet for draining waste fluids and gases from the electrochemical cell. The flowfield plate further includes lands extending between the plenum and face of the flowfield plate with holes extending through the lands, which place the plenum in fluid connection with the face of the flowfield plate. The plenum receives reactant fluid and distributes it evenly throughout the plenum to the holes. The holes are substantially perpendicular to the face of the flowfield plate, which is adjacent to the gas diffusion layer of the electrochemical cell, so that reactant fluid is delivered to the gas diffusion layer in such a way that the reactant fluid has a velocity component perpendicular to the surface of the gas diffusion layer.
    Type: Application
    Filed: March 11, 2002
    Publication date: September 11, 2003
    Applicant: Honeywell International, Inc.
    Inventors: Stanley F. Simpson, Dacong Weng
  • Publication number: 20030124411
    Abstract: The invention provides for reducing the number of parts and the number of interfaces found in certain types of chemical reactors, particularly in electrochemical reactors, and especially in the type or reactor known as a fuel cell or fuel cell stack. This reduction comes from the use of a unified structure that combines the functions normally carried out by several components in the unit, particularly by combining the functions of the gas distribution structure and the gas diffusion structure, the gas distribution structure and the gas barrier structure, or all three structures into a single, unitary, metallic part. This offers the advantages of simplified design, better performance, and lighter weight.
    Type: Application
    Filed: October 17, 2002
    Publication date: July 3, 2003
    Applicant: Lynntech, Inc.
    Inventors: Alan J. Cisar, Oliver J. Murphy, King-Tsai Jeng, Carlos Salinas, Stan Simpson, Dacong Weng, Homayoun Moaddel
  • Publication number: 20020195335
    Abstract: This invention is an improved fuel cell design for use at low pressure. The invention has a reduced number of component parts to reduce fabrication costs, as well as a simpler design that permits the size of the system to be reduced at the same time as performance is being improved.
    Type: Application
    Filed: April 9, 2002
    Publication date: December 26, 2002
    Inventors: Alan J. Cisar, Dacong Weng, Oliver J. Murphy
  • Publication number: 20020192523
    Abstract: This invention is an improved fuel cell design for use at low pressure. The invention has a reduced number of component parts to reduce fabrication costs, as well as a simpler design that permits the size of the system to be reduced at the same time as performance is being improved.
    Type: Application
    Filed: May 18, 2002
    Publication date: December 19, 2002
    Applicant: Lynntech, Inc.
    Inventors: Alan Cisar, Dacong Weng, Oliver J. Murphy
  • Patent number: 6426161
    Abstract: Thin, light weight bipolar plates for use in electrochemical cells are rapidly, and inexpensively manufactured in mass production by die casting, stamping or other well known methods for fabricating magnesium or aluminum parts. The use of a light metal, such as magnesium or aluminum minimizes weight and simultaneously improves both electrical and thermal conductivity compared to conventional carbon parts. For service in electrochemical cells these components must be protected from corrosion. This is accomplished by plating the surface of the light weight metal parts with a layer of denser, but more noble metal. The protective metal layer is deposited in one of several ways. One of these is deposition from an aqueous solution by either electroless means, electrolytic means, or a combination of the two. Another is deposition by electrolytic means from a non-aqueous solution, such as a molten salt.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: July 30, 2002
    Assignee: Lynntech, Inc.
    Inventors: Alan J. Cisar, Oliver J. Murphy, King-Tsai Jeng, Carlos Salinas, Stan Simpson, Dacong Weng
  • Patent number: 6410180
    Abstract: This invention is an improved fuel cell design for use at low pressure. The invention has a reduced number of component parts to reduce fabrication costs, as well as a simpler design that permits the size of the system to be reduced at the same time as performance is being improved. In the present design, an adjacent anode and cathode pair are fabricated using a common conductive element, with that conductive element serving to conduct the current from one cell to the adjacent one. This produces a small and simple system suitable for operating with gas fuels or alternatively directly with liquid fuels, such as methanol, dimethoxymethane, or trimethoxymethane. The use of these liquid fuels permits the storage of more energy in less volume while at the same time eliminating the need for handling compressed gases which further simplifies the fuel cell system.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: June 25, 2002
    Assignee: Lynntech, Inc.
    Inventors: Alan J. Cisar, Dacong Weng, Oliver J. Murphy
  • Patent number: 6232010
    Abstract: The invention provides for reducing the number of parts and the number of interfaces found in certain types of chemical reactors, particularly in electrochemical reactors, and especially in the type or reactor known as a fuel cell or fuel cell stack. This reduction comes from the use of a unified structure that combines the functions normally carried out by several components in the unit, particularly by combining the functions of the gas distribution structure and the gas diffusion structure, the gas distribution structure and the gas barrier structure, or all three structures into a single, unitary, metallic part. This offers the advantages of simplified design, better performance, and lighter weight.
    Type: Grant
    Filed: May 8, 1999
    Date of Patent: May 15, 2001
    Assignee: Lynn Tech Power Systems, Ltd.
    Inventors: Alan J. Cisar, Oliver J. Murphy, King-Tsai Jeng, Carlos Salinas, Stan Simpson, Dacong Weng, Homayoun Moaddel
  • Patent number: 6203936
    Abstract: Thin, light weight bipolar plates for use in electrochemical cells are rapidly, and inexpensively manufactured in mass production by die casting, stamping or other well known methods for fabricating magnesium or aluminum parts. The use of a light metal, such as magnesium or aluminum minimizes weight and simultaneously improves both electrical and thermal conductivity compared to conventional carbon parts. For service in electrochemical cells these components must be protected from corrosion. This is accomplished by plating the surface of the light weight metal parts with a layer of denser, but more noble metal. The protective metal layer is deposited in one of several ways. One of these is deposition from an aqueous solution by either electroless means, electrolytic means, or a combination of the two. Another is deposition by electrolytic means from a non-aqueous solution, such as a molten salt.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: March 20, 2001
    Assignee: Lynntech Inc.
    Inventors: Alan J. Cisar, Oliver J. Murphy, King-Tsai Jeng, Carlos Salinas, Stan Simpson, Dacong Weng
  • Patent number: 6054228
    Abstract: This invention is an improved fuel cell design for use at low pressure. The invention has a reduced number of component parts to reduce fabrication costs, as well as a simpler design that permits the size of the system to be reduced at the same time as performance is being improved. In the present design, an adjacent anode and cathode pair are fabricated using a common conductive element, with that conductive element serving to conduct the current from one cell to the adjacent one. This produces a small and simple system suitable for operating with gas fuels or alternatively directly with liquid fuels, such as methanol, dimethoxymethane, or trimethoxymethane. The use of these liquid fuels permits the storage of more energy in less volume while at the same time eliminating the need for handling compressed gases which further simplifies the fuel cell system.
    Type: Grant
    Filed: September 10, 1997
    Date of Patent: April 25, 2000
    Assignee: Lynntech, Inc.
    Inventors: Alan J. Cisar, Dacong Weng, Oliver J. Murphy
  • Patent number: 5958616
    Abstract: The invention provides devices and techniques for reducing or eliminating fuel crossover from the anode to the cathode in fuel cells using organic fuels. The invention particularly provides proton exchange membranes having passages or channels with or without a catalyst layer active for the electrochemical oxidation of a fuel. The invention reduces fuel crossover by providing void spaces within the membrane where the fuel may be sequestered as it diffuses through the membrane from the anode to the cathode. The sequestered fuel may be removed physically and/or electrochemically. The invention provides for physical removal of the sequestered fuel by means of flowing a gas stream or a liquid stream through the passages thus evacuating the fuel before it diffuses to the cathode.
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: September 28, 1999
    Assignee: Lynntech, Inc.
    Inventors: Carlos Salinas, Stanley F. Simpson, Oliver J. Murphy, Kryzysztof Franaszczuk, Homayoun Moaddel, Dacong Weng