Patents by Inventor Dahv Kliner

Dahv Kliner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10784645
    Abstract: Some embodiments may include a fiber laser, comprising: a variably wound optical fiber, wherein the variably wound optical fiber includes: a first length arranged in a plurality of first loops with a first separation distance between successive ones of the first loops; and a second length arranged in a plurality of second loops with a second separation distance between successive ones of the second loops; wherein the first separation distance between successive ones of the first loops is greater than the second separation distance between successive ones of the second loops; and packaging to remove heat generated by the optical fiber of the fiber laser during operation of the fiber laser, wherein the variably wound optical fiber is fixably mounted to a surface of a heat conductor of the packaging.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: September 22, 2020
    Assignee: NLIGHT, INC.
    Inventors: Aaron Ludwig Hodges, Nicolas Meacham, Dahv Kliner, Mitchell Ryan Reynolds
  • Publication number: 20190280449
    Abstract: Some embodiments may include a fiber laser, comprising: a variably wound optical fiber, wherein the variably wound optical fiber includes: a first length arranged in a plurality of first loops with a first separation distance between successive ones of the first loops; and a second length arranged in a plurality of second loops with a second separation distance between successive ones of the second loops; wherein the first separation distance between successive ones of the first loops is greater than the second separation distance between successive ones of the second loops; and packaging to remove heat generated by the optical fiber of the fiber laser during operation of the fiber laser, wherein the variably wound optical fiber is fixably mounted to a surface of a heat conductor of the packaging.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 12, 2019
    Applicant: NLIGHT, INC.
    Inventors: Aaron Ludwig Hodges, Nicolas Meacham, Dahv Kliner, Mitchell Ryan Reynolds
  • Patent number: 10090631
    Abstract: A cladding stripper includes a plurality of transversal notches or grooves in the outer surface of an exposed inner cladding of a double clad optical fiber. Position and orientation of the notches can be selected to even out cladding light release along the cladding light stripper, enabling more even temperature distributions due to released cladding light. The notches on the optical fiber can be made with a laser ablation system.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: October 2, 2018
    Assignee: Lumentum Operations LLC
    Inventors: Kai-Chung Hou, Dahv Kliner, Martin H. Muendel, Jeremy Weston
  • Patent number: 9823422
    Abstract: An optical delivery waveguide for a material laser processing system includes a small lens at an output end of the delivery waveguide, transforming laser beam divergence inside the waveguide into a spot size after the lens. By varying the input convergence angle and/or launch angle of the laser beam launched into the waveguide, the output spot size can be continuously varied, thus enabling a continuous and real-time laser spot size adjustment on the workpiece, without having to replace the delivery waveguide or a process head. A divergence of the laser beam can also be adjusted dynamically and in concert with the spot size.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: November 21, 2017
    Assignees: LUMENTUM OPERATIONS LLC, AMADA HOLDINGS CO. LTD
    Inventors: Martin H. Muendel, Dahv Kliner
  • Publication number: 20170110845
    Abstract: A cladding stripper includes a plurality of transversal notches or grooves in the outer surface of an exposed inner cladding of a double clad optical fiber. Position and orientation of the notches can be selected to even out cladding light release along the cladding light stripper, enabling more even temperature distributions due to released cladding light. The notches on the optical fiber can be made with a laser ablation system.
    Type: Application
    Filed: December 29, 2016
    Publication date: April 20, 2017
    Inventors: Kai-Chung HOU, Dahv KLINER, Martin H. MUENDEL, Jeremy WESTON
  • Patent number: 9547121
    Abstract: A cladding stripper includes a plurality of transversal notches or grooves in the outer surface of an exposed inner cladding of a double clad optical fiber. Position and orientation of the notches can be selected to even out cladding light release along the cladding light stripper, enabling more even temperature distributions due to released cladding light. The notches on the optical fiber can be made with a laser ablation system.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: January 17, 2017
    Assignee: Lumentum Operations LLC
    Inventors: Kai-Chung Hou, Dahv Kliner, Martin H. Muendel, Jeremy Weston
  • Publication number: 20160116679
    Abstract: An optical delivery waveguide for a material laser processing system includes a small lens at an output end of the delivery waveguide, transforming laser beam divergence inside the waveguide into a spot size after the lens. By varying the input convergence angle and/or launch angle of the laser beam launched into the waveguide, the output spot size can be continuously varied, thus enabling a continuous and real-time laser spot size adjustment on the workpiece, without having to replace the delivery waveguide or a process head. A divergence of the laser beam can also be adjusted dynamically and in concert with the spot size.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 28, 2016
    Inventors: Martin H. MUENDEL, Dahv KLINER
  • Patent number: 9250390
    Abstract: An optical delivery waveguide for a material laser processing system includes a small lens at an output end of the delivery waveguide, transforming laser beam divergence inside the waveguide into a spot size after the lens. By varying the input convergence angle and/or launch angle of the laser beam launched into the waveguide, the output spot size can be continuously varied, thus enabling a continuous and real-time laser spot size adjustment on the workpiece, without having to replace the delivery waveguide or a process head. A divergence of the laser beam can also be adjusted dynamically and in concert with the spot size.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: February 2, 2016
    Assignees: Lumentum Operations LLC, Amada Holdings Co., Ltd.
    Inventors: Martin H. Muendel, Dahv Kliner
  • Patent number: 8947768
    Abstract: The invention provides fiber-optic light sources such as cladding-pumped master oscillator—power amplifier (MOPA) systems which use double-clad optical fibers (DCF). The inner cladding of the first DCF used in the master oscillator section has a circular cross-section in order to enable the formation of low loss optical splices in the integrated MOPA structure. The inner cladding of the second DCF in the output amplifier section has a shaped non-circular cross-section in order to enhance the absorption of the pump light in the doped core of the second DCF.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: February 3, 2015
    Assignee: JDS Uniphase Corporation
    Inventors: Dahv Kliner, Martin H. Muendel
  • Publication number: 20140211818
    Abstract: A cladding stripper includes a plurality of transversal notches or grooves in the outer surface of an exposed inner cladding of a double clad optical fiber. Position and orientation of the notches can be selected to even out cladding light release along the cladding light stripper, enabling more even temperature distributions due to released cladding light. The notches on the optical fiber can be made with a laser ablation system.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 31, 2014
    Inventors: Kai-Chung HOU, Dahv Kliner, Martin H. Muendel, Jeremy Weston
  • Patent number: 8593725
    Abstract: The invention relates to pulsed optical sources formed of a source of seed optical radiation, a pulsed optical amplifier for pulsing the seed optical radiation, and an output optical port for outputting a pulsed optical signal produced by the pulsed optical amplifier. An optically isolating element such as an optical circulator is provided in the optical path between the optical seed source and the pulsed optical amplifier.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: November 26, 2013
    Assignee: JDS Uniphase Corporation
    Inventors: Dahv Kliner, Martin H. Muendel, Loren Eyres
  • Publication number: 20130301116
    Abstract: The invention provides fiber-optic light sources such as cladding-pumped master oscillator—power amplifier (MOPA) systems which use double-clad optical fibers (DCF). The inner cladding of the first DCF used in the master oscillator section has a circular cross-section in order to enable the formation of low loss optical splices in the integrated MOPA structure. The inner cladding of the second DCF in the output amplifier section has a shaped non-circular cross-section in order to enhance the absorption of the pump light in the doped core of the second DCF.
    Type: Application
    Filed: May 13, 2013
    Publication date: November 14, 2013
    Inventors: Dahv KLINER, Martin H. MUENDEL
  • Publication number: 20130148925
    Abstract: An optical delivery waveguide for a material laser processing system includes a small lens at an output end of the delivery waveguide, transforming laser beam divergence inside the waveguide into a spot size after the lens. By varying the input convergence angle and/or launch angle of the laser beam launched into the waveguide, the output spot size can be continuously varied, thus enabling a continuous and real-time laser spot size adjustment on the workpiece, without having to replace the delivery waveguide or a process head. A divergence of the laser beam can also be adjusted dynamically and in concert with the spot size.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 13, 2013
    Inventors: Martin H. Muendel, Dahv Kliner
  • Patent number: 8243764
    Abstract: The invention relates to a laser system including a nonlinear crystal having a first length portion and a second length portion. The nonlinear crystal disposed to receive input light from the laser for converting the input light into frequency converted light; wherein the nonlinear crystal is configured so that the first length portion of the nonlinear crystal is phase matching for the input light and the frequency converted light, and the second length portion of the nonlinear crystal is phase mismatching for the input light and the frequency converted light. Phase mismatching means may include a temperature controlling board, a clamp, or electrodes.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: August 14, 2012
    Inventors: Derek A. Tucker, Dahv Kliner, Lawrence E. Myers, Martin H. Muendel
  • Publication number: 20110243161
    Abstract: The invention relates to a laser system including a nonlinear crystal having a first length portion and a second length portion. The nonlinear crystal disposed to receive input light from the laser for converting the input light into frequency converted light; wherein the nonlinear crystal is configured so that the first length portion of the nonlinear crystal is phase matching for the input light and the frequency converted light, and the second length portion of the nonlinear crystal is phase mismatching for the input light and the frequency converted light. Phase mismatching means may include a temperature controlling board, a clamp, or electrodes.
    Type: Application
    Filed: April 1, 2010
    Publication date: October 6, 2011
    Applicant: JDS Uniphase Corporation
    Inventors: Derek A. TUCKER, Dahv Kliner, Lawrence E. Myers, Martin H. Muendel
  • Patent number: 8027555
    Abstract: A cladding mode stripper for stripping cladding modes from an optical fiber is disclosed. The cladding mode stripper includes a reflective base and a block of a transparent material disposed on the reflective base. The block of the transparent material has a groove in its bottom surface for the fiber. The fiber is thermally coupled to the base and optically coupled to the groove in the block, for example using an index matching gel. The cladding mode light is reflected from the reflective base and is absorbed in a cover enclosing the block. An additional thin block of transparent heat-conductive material can be placed between the fiber and the reflective base, to prevent the index matching gel from contacting the reflective surface of the base.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: September 27, 2011
    Assignee: JDS Uniphase Corporation
    Inventors: Dahv Kliner, Derek A. Tucker, Juan Lugo
  • Publication number: 20110032605
    Abstract: The invention relates to pulsed optical sources formed of a source of seed optical radiation, a pulsed optical amplifier for pulsing the seed optical radiation, and an output optical port for outputting a pulsed optical signal produced by the pulsed optical amplifier. An optically isolating element such as an optical circulator is provided in the optical path between the optical seed source and the pulsed optical amplifier.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 10, 2011
    Applicant: JDS Uniphase Corporation
    Inventors: Dahv KLINER, Martin H. Muendel, Loren Eyres
  • Publication number: 20050084222
    Abstract: The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.
    Type: Application
    Filed: June 30, 2003
    Publication date: April 21, 2005
    Inventors: Dahv Kliner, Jeffery Koplow
  • Publication number: 20050053104
    Abstract: The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of “invisible” gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.
    Type: Application
    Filed: September 10, 2003
    Publication date: March 10, 2005
    Inventors: Thomas Kulp, Dahv Kliner, Ricky Sommers, Uta-Barbara Goers, Karla Armstrong
  • Patent number: 6724528
    Abstract: A method of forming a linear polarization-maintaining optical fiber for use in an amplifier, the method comprising the steps of: providing a rare-earth-doped non-polarization-maintaining optical fiber having one or more cladding layers and having a random birefringence; providing a mandrel having a selected diameter; coiling said non-polarization-maintaining optical fiber under a selected tension around said mandrel to induce a linear birefringence greater than said random birefringence in said non-polarization-maintaining optical fiber thereby forming a polarization-maintaining optical fiber; wherein said mandrel diameter is chosen to avoid significant bend loss; wherein said rare-earth dopant is selected from the group consisting Nd3+, Yb3+, Pr3+, Ho3+, Er3+, Sm3+ and Tm3+; wherein said mandrel diameter is selected to be from about 0.1 cm to about 10 cm; and wherein said tension is chosen to avoid undesirable weakening of said non-polarization-maintaining fiber.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: April 20, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jeff Koplow, Dahv Kliner, Lew Goldberg