Patents by Inventor Dahwey Chu

Dahwey Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8907439
    Abstract: A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: December 9, 2014
    Assignee: Sandia Corporation
    Inventors: Randolph R. Kay, David V. Campbell, Subhash L. Shinde, Jeffrey L. Rienstra, Darwin K. Serkland, Michael L. Holmes, Seethambal S. Mani, Joy M. Barker, Dahwey Chu, Thomas Gurrieri
  • Patent number: 6905260
    Abstract: A process is provided for aligning and connecting at least one optical fiber to at least one optoelectronic device so as to couple light between at least one optical fiber and at least one optoelectronic device. One embodiment of this process comprises the following steps: (1) holding at least one optical element close to at least one optoelectronic device, at least one optical element having at least a first end; (2) aligning at least one optical element with at least one optoelectronic device; (3) depositing a first non-opaque material on a first end of at least one optoelectronic device; and (4) bringing the first end of at least one optical element proximate to the first end of at least one optoelectronic device in such a manner that the first non-opaque material contacts the first end of at least one optoelectronic device and the first end of at least one optical element. The optical element may be an optical fiber, and the optoelectronic device may be a vertical cavity surface emitting laser.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: June 14, 2005
    Assignee: Emcore Corporation
    Inventors: Gene R. Anderson, Marcelino G. Armendariz, Robert P. Bryan, Richard F. Carson, Dahwey Chu, Edwin B. Duckett, III, Rachel Knudsen Giunta, Robert T. Mitchell, Frederick B. McCormick, David W. Peterson, Merideth A. Rising, Cathleen A. Reber, Bill H. Reysen
  • Patent number: 6799902
    Abstract: An optoelectronic mounting structure is provided that may be used in conjunction with an optical transmitter, receiver or transceiver module. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region. In another embodiment, an electrical contact and ground plane may pass along a surface of the head region so as to provide an electrical contact path to the optoelectronic devices and limit electromagnetic interference. In yet another embodiment, a window may be formed in the head region of the mounting structure so as to provide access to the heat spreader. Optoelectronic devices may be adapted to the heat spreader in such a manner that the devices are accessible through the window in the mounting structure.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: October 5, 2004
    Assignee: Emcore Corporation
    Inventors: Gene R. Anderson, Marcelino G. Armendariz, Johnny R. F. Baca, Robert P. Bryan, Richard F. Carson, Dahwey Chu, Edwin B. Duckett, III, Frederick B. McCormick, David W. Peterson, Gary D. Peterson, Cathleen A. Reber, Bill H. Reysen
  • Publication number: 20030103735
    Abstract: A process is provided for aligning and connecting at least one optical fiber to at least one optoelectronic device so as to couple light between at least one optical fiber and at least one optoelectronic device. One embodiment of this process comprises the following steps: (1) holding at least one optical element close to at least one optoelectronic device, at least one optical element having at least a first end; (2) aligning at least one optical element with at least one optoelectronic device; (3) depositing a first non-opaque material on a first end of at least one optoelectronic device; and (4) bringing the first end of at least one optical element proximate to the first end of at least one optoelectronic device in such a manner that the first non-opaque material contacts the first end of at least one optoelectronic device and the first end of at least one optical element. The optical element may be an optical fiber, and the optoelectronic device may be a vertical cavity surface emitting laser.
    Type: Application
    Filed: December 26, 2000
    Publication date: June 5, 2003
    Inventors: Gene R. Anderson, Marcelino G. Armendariz, Robert P. Bryan, Richard F. Carson, Dahwey Chu, Edwin B. Duckett, Rachel Knudsen Giunta, Robert T. Mitchell, Frederick B. McCormick, David W. Peterson, Merideth A. Rising, Cathleen A. Reber, Bill H. Reysen
  • Publication number: 20020122636
    Abstract: An optoelectronic mounting structure is provided that may be used in conjunction with an optical transmitter, receiver or transceiver module. The apparatus comprises: (1) a mounting structure; (2) an array of optoelectronic devices adapted to the mounting structure, the optoelectronic devices having at least a first end; (3) an array of optical elements, the array of optical elements having at least a first end; (4) the first end of the array of optical elements proximate to the first end of the array of optoelectronic devices in such a manner that one or more optical elements is optically aligned to one or more optoelectronic devices; and (5) a heat spreader passing along a surface of a head region of the mounting structure. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region.
    Type: Application
    Filed: December 26, 2000
    Publication date: September 5, 2002
    Inventors: Gene R. Anderson, Marcelino G. Armendariz, Johnny R.F. Baca, Robert P. Bryan, Richard F. Carson, Dahwey Chu, Edwin B. Duckett, Frederick B. McCormick, David W. Peterson, Gary D. Peterson, Cathleen A. Reber, Bill H. Reysen
  • Publication number: 20020122637
    Abstract: This invention relates to an optical transmitter, receiver or transceiver module, and more particularly, to an optoelectronic connector. The optoelectronic connector comprises: (1) a mounting structure; (2) an array of optoelectronic devices adapted to the mounting structure, the optoelectronic devices having at least a first end; (3) an array of optical elements, the array of optical elements having at least a first end; (4) the first end of the array of optical elements proximate to the first end of the array of optoelectronic devices in such a manner that one or more optical elements is positioned relative to one or more optoelectronic devices; and (5) a heat spreader passing along a surface of a head region of the mounting structure. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region.
    Type: Application
    Filed: December 26, 2000
    Publication date: September 5, 2002
    Inventors: Gene R. Anderson, Marcelino G. Armendariz, Robert P. Bryan, Richard F. Carson, Dahwey Chu, Edwin B. Duckett., Frederick B. McCormick, Robert T. Mitchell, David W. Peterson, Bill H. Reysen
  • Patent number: 6052287
    Abstract: A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability.
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: April 18, 2000
    Assignee: Sandia Corporation
    Inventors: David W. Palmer, Richard A. Gassman, Dahwey Chu