Patents by Inventor Daihua Zhang

Daihua Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230006110
    Abstract: A photocurable composition includes quantum dots, quantum dot precursor materials, a chelating agent, one or more monomers, and a photoinitiator. The quantum dots are selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The quantum dot precursor materials include metal atoms or metal ions corresponding to metal components present in the quantum dots. The chelating agent is configured to chelate the quantum dot precursor materials. The photoinitiator initiates polymerization of the one or more monomers in response to absorption of radiation in the second wavelength band.
    Type: Application
    Filed: September 1, 2022
    Publication date: January 5, 2023
    Inventors: Yingdong Luo, Daihua Zhang, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20220363064
    Abstract: Embodiments described herein relate to an inkjet printing platform. The inkjet printing platform is utilized for fabrication of optical films and optical device structures. The inkjet printing platform includes a transfer chamber, one or more inkjet chambers, a plurality of auxiliary modules, a substrate flipper, and load ports. The inkjet printing platform is operable to perform an inkjet printing process on a substrate to form an optical film and/or an optical device.
    Type: Application
    Filed: January 12, 2022
    Publication date: November 17, 2022
    Inventors: Daihua ZHANG, Ludovic Godet, Michael David-Scott Kemp, Kang Luo, Kazuya Daito, Kenneth S. Ledford, Bahubali S. Upadhye, Hemantha Raju, John Rusconi, Elsa Massonneau, Mahendran Chidambaram, Alexey Stepanov, Visweswaren Sivaramakrishnan
  • Publication number: 20220363060
    Abstract: Embodiments described herein relate to an inkjet service station and methods of servicing an inkjet printer with the inkjet service station. The inkjet service station is disposed in an inkjet printer of an inkjet chamber. The inkjet service station is operable to perform servicing operations on a processing apparatus of the inkjet printer. The servicing operations include at least one of printhead spitting, printhead purging, printhead flushing, printhead cleaning, printhead drying, or vacuum suction.
    Type: Application
    Filed: January 12, 2022
    Publication date: November 17, 2022
    Inventors: Daihua ZHANG, Kang LUO, Kazuya DAITO, Kenneth S. LEDFORD, Elsa MASSONNEAU, Alexey STEPANOV, Ludovic GODET, Mahendran CHIDAMBARAM, Visweswaren SIVARAMAKRISHNAN, Bahubali S. UPADHYE, Hemantha RAJU
  • Publication number: 20220355589
    Abstract: Embodiments described herein provide for a fluid management system and a method of utilizing the fluid management system. The fluid management system includes a servicing fluid management system and an ink management system. The servicing fluid management system and the ink management system run in parallel within an inkjet chamber. The ink management system supports the flow of inkjet materials between a waste tank, one or more inkjet material supply tanks, an ink management module, and the inkjet printer. The servicing fluid management system supports the flow of servicing fluids between the waste tank, one or more servicing fluid supply tanks, a servicing fluid management module, and the inkjet printer.
    Type: Application
    Filed: January 12, 2022
    Publication date: November 10, 2022
    Inventors: Daihua ZHANG, Kazuya DAITO, Kang LUO, Elsa MASSONNEAU, Alexey STEPANOV, Ludovic GODET
  • Publication number: 20220336246
    Abstract: A method for printing on a substrate includes printing a support structure by printing a liquid precursor material and curing the liquid precursor material, positioning a substrate within the support structure, printing one or more anchors on the substrate and the support structure by printing and curing the liquid precursor material to secure the substrate to the support structure, and printing one or more device structures on the substrate while anchored by printing and curing the liquid precursor material.
    Type: Application
    Filed: May 2, 2022
    Publication date: October 20, 2022
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
  • Publication number: 20220328336
    Abstract: Printing on a substrate includes printing a support structure by printing a liquid precursor material and curing the liquid precursor material, printing one or more alignment markers by printing the liquid precursor material outside the support structure and curing the liquid precursor material, positioning a substrate within the support structure, performing a registration of the substrate using the one or more alignment markers, and printing one or more device structures on the substrate while registered by printing and curing the liquid precursor material.
    Type: Application
    Filed: June 16, 2022
    Publication date: October 13, 2022
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
  • Publication number: 20220288878
    Abstract: A method of fabricating a multi-color display includes dispensing a first photo-curable fluid through apertures in a first mask into a first plurality of wells in a display. A first plurality of light emitting diodes are activated to illuminate and cure the first photo-curable fluid to form a first color conversion layer over each of the first plurality of light emitting diodes, and an uncured remainder of the first photo-curable fluid is removed. A second photo-curable fluid is dispensed through apertures in a second mask into a second plurality of wells in the display. A second plurality of light emitting diodes are activated to illuminate and cure the second photo-curable fluid to form a second color conversion layer over each of the second plurality of light emitting diodes. An uncured remainder of the second photo-curable fluid is removed.
    Type: Application
    Filed: March 10, 2022
    Publication date: September 15, 2022
    Inventors: Hou T. Ng, Nag B. Patibandla, Giorgio Cellere, Daihua Zhang
  • Publication number: 20220293826
    Abstract: A method of fabricating a multi-color display includes forming a host matrix over a display having an array of light emitting diodes. The host matrix is sensitive to ultraviolet light. A first plurality of light emitting diodes in a first plurality of wells are activated to illuminate a portion of the host matrix to cause the portion of the host matrix to develop internal porous structures. A first photo-curable fluid including a first color conversion agent is dispensed. The first plurality of light emitting diodes in the first plurality of wells are activated to illuminate and cure the first photo-curable fluid to form a first color conversion layer over each of the first plurality of light emitting diodes, and an uncured remainder of the first photo-curable fluid is removed.
    Type: Application
    Filed: March 10, 2022
    Publication date: September 15, 2022
    Inventors: Hou T. Ng, Nag B. Patibandla, Giorgio Cellere, Daihua Zhang
  • Publication number: 20220293816
    Abstract: An LED display fabrication tool includes a plurality of process chambers and a plurality of transfer chambers. The plurality of process chambers include first and second dispensing chambers to deliver first and second color conversion precursors onto a workpiece for fabrication of a light emitting diode (LED) displays, and first and second washing/drying chambers to remove uncured portions of the first and second color conversion precursors from the workpiece and then dries the workpiece. The plurality of transfer chambers are coupled to two process chambers by two respective sealable ports. First and second curing stations cure the precursors to form the first and second color conversion layers over a first set of LEDs on the workpiece.
    Type: Application
    Filed: March 9, 2022
    Publication date: September 15, 2022
    Inventors: Hou T. Ng, Daihua Zhang, Nag B. Patibandla
  • Publication number: 20220293435
    Abstract: A LED display fabrication tool includes first and second dispensing chambers to deliver first and second color conversion precursors onto a workpiece for fabrication of a light emitting diode (LED) displays, first and second curing stations to cure the workpiece to form first and second color conversion layers over a first and second set of LEDs on the workpiece, and first and second washing/drying chambers to remove uncured portions of the first and second color conversion precursors from the workpiece and then dry the workpiece. Each of the chambers is independently sealable. A controller controls a workpiece transport system to move the workpiece sequentially between the chambers.
    Type: Application
    Filed: March 9, 2022
    Publication date: September 15, 2022
    Inventors: Hou T. Ng, Daihua Zhang, Nag B. Patibandla
  • Publication number: 20220293441
    Abstract: A LED display fabrication tool includes a plurality of chambers including an initial chamber, a final chamber, and a plurality of intermediate chambers, and the plurality of chambers are arranged to form a transfer line from the initial chamber to the final chamber with each intermediate chamber coupled by a first sealable port to a prior chamber in the transfer line and by a second sealable port to a subsequent chamber in the transfer line. The plurality of chambers include first and second dispensing chambers to deliver first and second color conversion precursors onto a workpiece for fabrication of a light emitting diode (LED) displays, and first and second washing/drying chambers to remove uncured portions of the first and second color conversion precursors. First and second curing stations cure the precursors.
    Type: Application
    Filed: March 9, 2022
    Publication date: September 15, 2022
    Inventors: Hou T. Ng, Daihua Zhang, Nag B. Patibandla
  • Patent number: 11367643
    Abstract: A method for printing on a substrate includes printing a support structure by printing a liquid precursor material and curing the liquid precursor material, printing one or more alignment markers by printing the liquid precursor material outside the support structure and curing the liquid precursor material, positioning a substrate within the support structure, performing a registration of the substrate using the one or more alignment markers, and printing one or more device structures on the substrate while registered by printing and curing the liquid precursor material.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: June 21, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
  • Publication number: 20220189933
    Abstract: A multi-color display includes a backplane having backplane circuitry, an array of micro-LEDs electrically integrated with backplane circuitry of the backplane, a cover layer spanning the LEDs and having a plurality of recesses, and first and second color conversion layers. Each recess of the plurality of recesses positioned over a corresponding micro-LED from the plurality of micro-LEDs, the first color conversion layer is in each recess over a first plurality of LEDs to convert the illumination from the first plurality of LEDs to light of a first color, and the second color conversion layer is in each recess over a second plurality of LEDs to convert the illumination from the second plurality of LEDs to light of a different second color.
    Type: Application
    Filed: January 28, 2022
    Publication date: June 16, 2022
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20220152724
    Abstract: The present disclosure generally relates to a method and apparatus for forming a substrate having a graduated refractive index. A method of forming a waveguide structure includes expelling plasma from an applicator having a head toward a plurality of grating structures formed on a substrate. The plasma is formed in the head at atmospheric pressure. The method further includes changing a depth of the plurality of grating structures with the plasma by removing grating material from the plurality of grating structures.
    Type: Application
    Filed: November 17, 2021
    Publication date: May 19, 2022
    Inventors: Kang LUO, Ludovic GODET, Daihua ZHANG, Nai-Wen PI, Jinrui GUO, Rami HOURANI
  • Patent number: 11329003
    Abstract: A method of printing structures on a reconstructed wafer includes positioning a plurality of semiconductor dies on a support substrate, anchoring the plurality of semiconductor dies to the support substrate by printing a plurality of anchors that extend across edges of the semiconductor dies onto the support substrate and thus form a reconstructed wafer, and printing one or more device structures on the pluralities of semiconductor dies while anchored on the support substrate. The printing operations include ejecting droplets of a liquid precursor material and curing the liquid precursor material.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: May 10, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
  • Patent number: 11322381
    Abstract: A method for printing on a substrate includes printing a support structure by printing a liquid precursor material and curing the liquid precursor material, positioning a substrate within the support structure, printing one or more anchors on the substrate and the support structure by printing and curing the liquid precursor material to secure the substrate to the support structure, and printing one or more device structures on the substrate while anchored by printing and curing the liquid precursor material.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: May 3, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Hou T. Ng, Nag B. Patibandla, Sivapackia Ganapathiappan, Yingdong Luo, Kyuil Cho, Han-Wen Chen
  • Publication number: 20220111579
    Abstract: A method of forming a three dimensional object includes dispensing droplets of an electromagnetic energy curable liquid onto a surface to form a plurality of layers of the three dimensional object in liquid form, wherein each droplet forms a layer of liquid on the surface which is larger than a minimum feature size of a structure to be formed by curing the curable liquid, and directing electromagnetic energy capable of curing the liquid and having a beam width intersecting the layer of liquid which is at least as small as the smallest feature of a structure to be formed in the curable liquid.
    Type: Application
    Filed: October 14, 2020
    Publication date: April 14, 2022
    Inventors: Daihua ZHANG, Uma SRIDHAR, Hou T. NG, Sivapackia GANAPATHIAPPAN, Nag B. PATIBANDLA
  • Publication number: 20220091314
    Abstract: Embodiments of the present disclosure generally relate to optical devices. More specifically, embodiments described herein relate to optical devices and methods of manufacturing optical devices having optical device structures with at least one of varying depths or refractive indices across the surface of a substrate. According to certain embodiments, an inkjet process is used to deposit a volumetrically variable optical device that is etched to form a diffractive optic element (DOE). Volumetrically variable can relate to the thickness of the optical device, or the relative volume of two or more diffractive materials deposited in combination. According to other embodiments, a single-profile DOE is deposited on a substrate and an inkjet process deposits a volumetrically variable organic material over the DOE. The DOE and organic material are etched to modify the profile of the structure, after which the organic material is removed, leaving the modified-profile DOE.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 24, 2022
    Inventors: Kang Luo, Xiaopei Deng, Daihua Zhang, Ludovic Godet
  • Publication number: 20220069173
    Abstract: A photocurable composition includes quantum dots, quantum dot precursor materials, a chelating agent, one or more monomers, and a photoinitiator. The quantum dots are selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The quantum dot precursor materials include metal atoms or metal ions corresponding to metal components present in the quantum dots. The chelating agent is configured to chelate the quantum dot precursor materials. The photoinitiator initiates polymerization of the one or more monomers in response to absorption of radiation in the second wavelength band.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 3, 2022
    Inventors: Yingdong Luo, Daihua Zhang, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20220035251
    Abstract: A method of forming a three dimensional feature inwardly of a surface of a material includes providing a droplet dispenser including an outlet configured to dispense discrete droplets of a liquid material having a reactant therein capable of reacting with, and thereby removing, portions of the material layer with which the droplets come into contact, providing a support configured support the material thereon, the support, and the droplet dispenser, movable with respect to one another, such that the outlet of the droplet dispenser is positionable over different discrete areas of the surface of the material, and positioning the surface of the material under the droplet dispenser, and dispensing droplets to discrete portions of the surface of the material in a desired area thereof, to remove at least a portion of the material in the desired area and thereby form a three dimensional recess inwardly of the surface of the material.
    Type: Application
    Filed: September 25, 2020
    Publication date: February 3, 2022
    Inventors: Jinrui GUO, Ludovic GODET, Daihua ZHANG, Kang LUO, Rami HOURANI