Patents by Inventor Daisuke Kurosaki

Daisuke Kurosaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200395390
    Abstract: A semiconductor device including an oxide semiconductor in which on-state current is high is provided. The semiconductor device includes a first transistor provided in a driver circuit portion and a second transistor provided in a pixel portion; the first transistor and the second transistor are transistors having a top-gate structure. In an oxide semiconductor film of each of the transistors, an impurity element is contained in regions which do not overlap with a gate electrode. The regions of the oxide regions. Furthermore, the regions of the oxide semiconductor film which contain the impurity element are in contact with a film containing hydrogen. The first transistor provided in the driver circuit portion includes two gate electrodes between which the oxide semiconductor film is provided.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventors: Junichi KOEZUKA, Masami JINTYOU, Yukinori SHIMA, Daisuke KUROSAKI, Masataka NAKADA, Shunpei YAMAZAKI
  • Publication number: 20200381460
    Abstract: A display device includes a liquid crystal element, a transistor, a scan line, and a signal line. The liquid crystal element includes a pixel electrode, a liquid crystal layer, and a common electrode. The scan line and the signal line are each electrically connected to the transistor. The scan line and the signal line each include a metal layer. The transistor is electrically connected to the pixel electrode. A semiconductor layer of the transistor includes a stack of a first metal oxide layer and a second metal oxide layer. The first metal oxide layer includes a region with lower crystallinity than the second metal oxide layer. The transistor includes a first region connected to the pixel electrode. The pixel electrode, the common electrode, and the first region are each configured to transmit visible light. Visible light passes through the first region and the liquid crystal element and exits from the display device.
    Type: Application
    Filed: August 21, 2020
    Publication date: December 3, 2020
    Inventors: Shunpei YAMAZAKI, Kenichi OKAZAKI, Daisuke KUROSAKI, Yasutaka NAKAZAWA, Kazunori WATANABE, Koji KUSUNOKI
  • Publication number: 20200321280
    Abstract: A semiconductor device having favorable electrical characteristics is provided. A semiconductor device having stable electrical characteristics is provided. A highly reliable semiconductor device is provided. The semiconductor device includes a semiconductor layer, a first insulating layer, and a first conductive layer. The semiconductor layer includes an island-shaped top surface. The first insulating layer is provided in contact with a top surface and a side surface of the semiconductor layer. The first conductive layer is positioned over the first insulating layer and includes a portion overlapping with the semiconductor layer. In addition, the semiconductor layer includes a metal oxide, and the first insulating layer includes an oxide. The semiconductor layer includes a first region overlapping with the first conductive layer and a second region not overlapping with the first conductive layer.
    Type: Application
    Filed: December 19, 2018
    Publication date: October 8, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junichi KOEZUKA, Toshimitsu OBONAI, Masami JINTYOU, Daisuke KUROSAKI
  • Publication number: 20200313002
    Abstract: A change in electrical characteristics is inhibited and reliability is improved in a semiconductor device using a transistor including an oxide semiconductor. One embodiment of a semiconductor device including a transistor includes a gate electrode, first and second insulating films over the gate electrode, an oxide semiconductor film over the second insulating film, and source and drain electrodes electrically connected to the oxide semiconductor film. A third insulating film is provided over the transistor and a fourth insulating film is provided over the third insulating film. The third insulating film includes oxygen. The fourth insulating film includes nitrogen. The amount of oxygen released from the third insulating film is 1×1019/cm3 or more by thermal desorption spectroscopy, which is estimated as oxygen molecules. The amount of oxygen molecules released from the fourth insulating film is less than 1×1019/cm3.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Shunpei YAMAZAKI, Junichi KOEZUKA, Masami JINTYOU, Daisuke KUROSAKI
  • Patent number: 10790318
    Abstract: A liquid crystal display device with a high aperture ratio is provided. A liquid crystal display device with low power consumption is provided. A display device includes a transistor and a capacitor. The transistor includes a first insulating layer, a first semiconductor layer in contact with the first insulating layer, a second insulating layer in contact with the first semiconductor layer, and a first conductive layer electrically connected to the first semiconductor layer via an opening portion provided in the second insulating layer. The capacitor includes a second conductive layer in contact with the first insulating layer, the second insulating layer in contact with the second conductive layer, and the first conductive layer in contact with the second insulating layer. The second conductive layer includes a composition similar to that of the first semiconductor layer. The first conductive layer and the second conductive layer are configured to transmit visible light.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: September 29, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kenichi Okazaki, Daisuke Kurosaki, Yasutaka Nakazawa
  • Patent number: 10763282
    Abstract: A semiconductor device including an oxide semiconductor in which on-state current is high is provided. The semiconductor device includes a first transistor provided in a driver circuit portion and a second transistor provided in a pixel portion; the first transistor and the second transistor have different structures. Furthermore, the first transistor and the second transistor are transistors having a top-gate structure. In an oxide semiconductor film of each of the transistors, an impurity element is contained in regions which do not overlap with a gate electrode. The regions of the oxide semiconductor film which contain the impurity element function as low-resistance regions. Furthermore, the regions of the oxide semiconductor film which contain the impurity element are in contact with a film containing hydrogen. The first transistor provided in the driver circuit portion includes two gate electrodes between which the oxide semiconductor film is provided.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: September 1, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Masami Jintyou, Yukinori Shima, Daisuke Kurosaki, Masataka Nakada, Shunpei Yamazaki
  • Patent number: 10756118
    Abstract: A display device includes a liquid crystal element, a transistor, a scan line, and a signal line. The liquid crystal element includes a pixel electrode, a liquid crystal layer, and a common electrode. The scan line and the signal line are each electrically connected to the transistor. The scan line and the signal line each include a metal layer. The transistor is electrically connected to the pixel electrode. A semiconductor layer of the transistor includes a stack of a first metal oxide layer and a second metal oxide layer. The first metal oxide layer includes a region with lower crystallinity than the second metal oxide layer. The transistor includes a first region connected to the pixel electrode. The pixel electrode, the common electrode, and the first region are each configured to transmit visible light. Visible light passes through the first region and the liquid crystal element and exits from the display device.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: August 25, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kenichi Okazaki, Daisuke Kurosaki, Yasutaka Nakazawa, Kazunori Watanabe, Koji Kusunoki
  • Publication number: 20200227257
    Abstract: To provide a novel method for manufacturing a semiconductor device. To provide a method for manufacturing a highly reliable semiconductor device at relatively low temperature. The method includes a first step of forming a first oxide semiconductor film in a deposition chamber and a second step of forming a second oxide semiconductor film over the first oxide semiconductor film in the deposition chamber. Water vapor partial pressure in an atmosphere in the deposition chamber is lower than water vapor partial pressure in atmospheric air. The first oxide semiconductor film and the second oxide semiconductor film are formed such that the first oxide semiconductor film and the second oxide semiconductor film each have crystallinity. The second oxide semiconductor film is formed such that the crystallinity of the second oxide semiconductor film is higher than the crystallinity of the first oxide semiconductor film.
    Type: Application
    Filed: January 27, 2020
    Publication date: July 16, 2020
    Inventors: Shunpei YAMAZAKI, Daisuke KUROSAKI, Yasutaka NAKAZAWA, Kenichi OKAZAKI
  • Publication number: 20200225785
    Abstract: A touch panel including an oxide semiconductor film having conductivity is provided. The touch panel includes a transistor, a second insulating film, and a touch sensor. The transistor includes a gate electrode; a gate insulating film; a first oxide semiconductor film; a source electrode and a drain electrode; a first insulating film; and a second oxide semiconductor film. The second insulating film is over the second oxide semiconductor film so that the second oxide semiconductor film is positioned between the first insulating film and the second insulating film. The touch sensor includes a first electrode and a second electrode. One of the first and second electrodes includes the second oxide semiconductor film.
    Type: Application
    Filed: March 26, 2020
    Publication date: July 16, 2020
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Hajime KIMURA, Masami JINTYOU, Yasuharu HOSAKA, Naoto GOTO, Takahiro IGUCHI, Daisuke KUROSAKI, Junichi KOEZUKA
  • Patent number: 10693014
    Abstract: A change in electrical characteristics is inhibited and reliability is improved in a semiconductor device using a transistor including an oxide semiconductor. One embodiment of a semiconductor device including a transistor includes a gate electrode, first and second insulating films over the gate electrode, an oxide semiconductor film over the second insulating film, and source and drain electrodes electrically connected to the oxide semiconductor film. A third insulating film is provided over the transistor and a fourth insulating film is provided over the third insulating film. The third insulating film includes oxygen. The fourth insulating film includes nitrogen. The amount of oxygen released from the third insulating film is 1×1019/cm3 or more by thermal desorption spectroscopy, which is estimated as oxygen molecules. The amount of oxygen molecules released from the fourth insulating film is less than 1×1019/cm3.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: June 23, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichi Koezuka, Masami Jintyou, Daisuke Kurosaki
  • Publication number: 20200176068
    Abstract: A semiconductor device in which a decrease in the yield by electrostatic destruction can be prevented is provided. A scan line driver circuit for supplying a signal for selecting a plurality of pixels to a scan line includes a shift register for generating the signal. One conductive film functioning as respective gate electrodes of a plurality of transistors in the shift register is divided into a plurality of conductive films. The divided conductive films are electrically connected to each other by a conductive film which is formed in a layer different from the divided conductive films are formed. The plurality of transistors includes a transistor on an output side of the shift register.
    Type: Application
    Filed: February 3, 2020
    Publication date: June 4, 2020
    Inventors: Masayuki SAKAKURA, Yuugo GOTO, Hiroyuki MIYAKE, Daisuke KUROSAKI
  • Publication number: 20200168738
    Abstract: In a semiconductor device using a transistor including an oxide semiconductor, a change in electrical characteristics is inhibited and reliability is improved. The transistor includes a first gate electrode; a first insulating film over the first gate electrode; an oxide semiconductor film over the first insulating film; a source electrode electrically connected to the oxide semiconductor film; a drain electrode electrically connected to the oxide semiconductor film; a second insulating film over the oxide semiconductor film, the source electrode, and the drain electrode; and a second gate electrode over the second insulating film. The second insulating film includes oxygen. The second gate electrode includes the same metal element as at least one of metal elements of the oxide semiconductor film and has a region thinner than the oxide semiconductor film.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichi Koezuka, Masami Jintyou, Daisuke Kurosaki
  • Publication number: 20200161340
    Abstract: A highly reliable semiconductor device is provided. A second insulating layer is positioned over a first insulating layer. A semiconductor layer is positioned between the first insulating layer and the second insulating layer. A third insulating layer is positioned over the second insulating layer. A fourth insulating layer is positioned over the third insulating layer. A first conductive layer includes a region overlapping with the semiconductor layer, and is positioned between the third insulating layer and the fourth insulating layer. The third insulating layer includes a region in contact with a bottom surface of the first conductive layer and a region in contact with the fourth insulating layer. The fourth insulating layer is in contact with atop surface and a side surface of the first conductive layer. A fifth insulating layer is in contact with a top surface and a side surface of the semiconductor layer.
    Type: Application
    Filed: August 22, 2018
    Publication date: May 21, 2020
    Inventors: Masami JINTYOU, Daisuke KUROSAKI, Masakatsu OHNO, Junichi KOEZUKA
  • Publication number: 20200161435
    Abstract: A metal oxide film includes indium, M, (M is Al, Ga, Y, or Sn), and zinc and includes a region where a peak having a diffraction intensity derived from a crystal structure is observed by X-ray diffraction in the direction perpendicular to the film surface. Moreover, a plurality of crystal parts is observed in a transmission electron microscope image in the direction perpendicular to the film surface. The proportion of a region other than the crystal parts is higher than or equal to 20% and lower than or equal to 60%.
    Type: Application
    Filed: January 10, 2020
    Publication date: May 21, 2020
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuharu Hosaka, Toshimitsu OBONAI, Yukinori SHIMA, Masami JINTYOU, Daisuke KUROSAKI, Takashi HAMOCHI, Junichi KOEZUKA, Kenichi OKAZAKI, Shunpei YAMAZAKI
  • Publication number: 20200144305
    Abstract: To improve field-effect mobility and reliability of a transistor including an oxide semiconductor film. A semiconductor device includes an oxide semiconductor film, a gate electrode, an insulating film over the gate electrode, the oxide semiconductor film over the insulating film, and a pair of electrodes over the oxide semiconductor film. The oxide semiconductor film includes a first oxide semiconductor film and a second oxide semiconductor film over the first oxide semiconductor film. The first oxide semiconductor film and the second oxide semiconductor film, include the same element. The first oxide semiconductor film includes a region having lower crystallinity than the second oxide semiconductor film.
    Type: Application
    Filed: November 1, 2019
    Publication date: May 7, 2020
    Inventors: Shunpei YAMAZAKI, Kenichi OKAZAKI, Daisuke KUROSAKI, Yasutaka NAKAZAWA
  • Publication number: 20200111407
    Abstract: The number of lithography processes is reduced and a high-definition display device is provided. The display device includes a pixel portion and a driver circuit for driving the pixel portion. The pixel portion includes a first transistor and a pixel electrode electrically connected to the first transistor. The driver circuit includes a second transistor and a connection portion. The second transistor includes a metal oxide film, first and second gate electrodes that face each other with the metal oxide film positioned therebetween, source and drain electrodes over and in contact with the metal oxide film, and a first wiring connecting the first and second gate electrodes. The connection portion includes a second wiring on the same surface as the first gate electrode, a third wiring on the same surface as the source electrode and the drain electrode, and a fourth wiring connecting the second wiring and the third wiring.
    Type: Application
    Filed: December 6, 2019
    Publication date: April 9, 2020
    Inventors: Masahiro KATAYAMA, Daisuke KUROSAKI, Kenichi OKAZAKI, Junichi KOEZUKA
  • Patent number: 10580508
    Abstract: A semiconductor device in which a decrease in the yield by electrostatic destruction can be prevented is provided. A scan line driver circuit for supplying a signal for selecting a plurality of pixels to a scan line includes a shift register for generating the signal. One conductive film functioning as respective gate electrodes of a plurality of transistors in the shift register is divided into a plurality of conductive films. The divided conductive films are electrically connected to each other by a conductive film which is formed in a layer different from the divided conductive films are formed. The plurality of transistors includes a transistor on an output side of the shift register.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: March 3, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masayuki Sakakura, Yuugo Goto, Hiroyuki Miyake, Daisuke Kurosaki
  • Patent number: 10580641
    Abstract: To provide a novel method for manufacturing a semiconductor device. To provide a method for manufacturing a highly reliable semiconductor device at relatively low temperature. The method includes a first step of forming a first oxide semiconductor film in a deposition chamber and a second step of forming a second oxide semiconductor film over the first oxide semiconductor film in the deposition chamber. Water vapor partial pressure in an atmosphere in the deposition chamber is lower than water vapor partial pressure in atmospheric air. The first oxide semiconductor film and the second oxide semiconductor film are formed such that the first oxide semiconductor film and the second oxide semiconductor film each have crystallinity. The second oxide semiconductor film is formed such that the crystallinity of the second oxide semiconductor film is higher than the crystallinity of the first oxide semiconductor film.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: March 3, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Daisuke Kurosaki, Yasutaka Nakazawa, Kenichi Okazaki
  • Patent number: 10535742
    Abstract: A metal oxide film includes indium, , ( is Al, Ga, Y, or Sn), and zinc and includes a region where a peak having a diffraction intensity derived from a crystal structure is observed by X-ray diffraction in the direction perpendicular to the film surface. Moreover, a plurality of crystal parts is observed in a transmission electron microscope image in the direction perpendicular to the film surface. The proportion of a region other than the crystal parts is higher than or equal to 20% and lower than or equal to 60%.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: January 14, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuharu Hosaka, Toshimitsu Obonai, Yukinori Shima, Masami Jintyou, Daisuke Kurosaki, Takashi Hamochi, Junichi Koezuka, Kenichi Okazaki, Shunpei Yamazaki
  • Publication number: 20190378585
    Abstract: A semiconductor device in which a decrease in the yield by electrostatic destruction can be prevented is provided. A scan line driver circuit for supplying a signal for selecting a plurality of pixels to a scan line includes a shift register for generating the signal. One conductive film functioning as respective gate electrodes of a plurality of transistors in the shift register is divided into a plurality of conductive films. The divided conductive films are electrically connected to each other by a conductive film which is formed in a layer different from the divided conductive films are formed. The plurality of transistors includes a transistor on an output side of the shift register.
    Type: Application
    Filed: August 22, 2019
    Publication date: December 12, 2019
    Inventors: Masayuki SAKAKURA, Yuugo GOTO, Hiroyuki MIYAKE, Daisuke KUROSAKI