Patents by Inventor Dakota Kelley

Dakota Kelley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962046
    Abstract: Described are systems and methods for directly monitoring the conductivity of the coolant used to regulate the temperature of a fuel cell. The system includes a coolant loop that acts as a conduit for the coolant, an ion exchanger configured to deionize the coolant, and a conductivity sensor configured to output an electrical signal indicating a conductivity of the coolant. The system also includes a processor in communication with the conductivity sensor and a memory having instructions that, when executed by the processor, cause the processor to determine the conductivity of the coolant based on the electrical signal from the conductivity sensor and determine when the ion exchanger requires servicing based on the conductivity of the coolant.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: April 16, 2024
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Matthew K. McClory, Daniel Charles Folick, Dakota Kelley
  • Patent number: 11862831
    Abstract: A container for a fuel cell system includes a system frame configured to house one or more components of a fuel cell system. The container also includes a plurality of fuel cells supported by the system frame and configured to provide power to an external unit. The container also includes a raised floor configured to support the plurality of fuel cells. The container also includes a cooling system. The cooling system includes a central cooling pipe located underneath the raised floor, a plurality of fuel cell cooling pipes connected to the central cooling pipe and to each fuel cell, and a cooling pipe valve configured to regulate the pressure of the cooling system.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: January 2, 2024
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Matthew K. McClory, Daniel Charles Folick, Dakota Kelley
  • Publication number: 20230213905
    Abstract: System, methods, and other embodiments described herein relate to safely activating a fuel cell (FC) within a generator. In one embodiment, a method includes initiating a test for sensitive systems of a generator using backup power including a battery. The method also includes powering an FC and a direct current (DC) converter within the generator to an operational level using the battery, wherein the DC converter stabilizes a circuit fed by the FC. The method also includes, upon successfully completing the test and powering the FC and the DC converter, energizing a load inverter after completing a non-critical sequence that controls support systems of the generator, wherein the DC converter stabilizes energy between the FC, the battery, and the load inverter.
    Type: Application
    Filed: December 30, 2021
    Publication date: July 6, 2023
    Inventors: Daniel Charles Folick, Matthew K. McClory, Dakota Kelley
  • Publication number: 20230216073
    Abstract: System, methods, and other embodiments described herein relate to safely ceasing fuel cell (FC) operation and idling components of a generator. In one embodiment, a method includes ceasing power generation by reducing fuel to an FC within a generator while maintaining energy to sensitive components by a battery. The method also includes idling a direct current (DC) converter and a load inverter associated with the power generation before idling the battery. The method also includes, upon successfully completing tests and powering down non-critical components of the generator, entering the generator into a standby status.
    Type: Application
    Filed: December 30, 2021
    Publication date: July 6, 2023
    Inventors: Daniel Charles Folick, Matthew K. McClory, Dakota Kelley
  • Publication number: 20230207840
    Abstract: Described are systems and methods for directly monitoring the conductivity of the coolant used to regulate the temperature of a fuel cell. The system includes a coolant loop that acts as a conduit for the coolant, an ion exchanger configured to deionize the coolant, and a conductivity sensor configured to output an electrical signal indicating a conductivity of the coolant. The system also includes a processor in communication with the conductivity sensor and a memory having instructions that, when executed by the processor, cause the processor to determine the conductivity of the coolant based on the electrical signal from the conductivity sensor and determine when the ion exchanger requires servicing based on the conductivity of the coolant.
    Type: Application
    Filed: December 29, 2021
    Publication date: June 29, 2023
    Inventors: Matthew K. McClory, Daniel Charles Folick, Dakota Kelley
  • Publication number: 20230207853
    Abstract: A container for a fuel cell system includes a system frame configured to house one or more components of a fuel cell system. The container also includes a plurality of fuel cells supported by the system frame and configured to provide power to an external unit. The container also includes a raised floor configured to support the plurality of fuel cells. The container also includes a cooling system. The cooling system includes a central cooling pipe located underneath the raised floor, a plurality of fuel cell cooling pipes connected to the central cooling pipe and to each fuel cell, and a cooling pipe valve configured to regulate the pressure of the cooling system.
    Type: Application
    Filed: December 28, 2021
    Publication date: June 29, 2023
    Inventors: Matthew K. McClory, Daniel Charles Folick, Dakota Kelley
  • Publication number: 20230207846
    Abstract: Systems and methods for monitoring the isolation resistance of one or more fuel cells are described herein. In one example, a system includes a current transformer having a hollow core. First and second portions of a load line from a fuel cell are located within the hollow core. The first portion of the load line is electrically between an anode of a fuel cell and an electrical load, while the second portion of the load line being electrically between a cathode of the fuel cell and the electrical load. The current transformer is configured to output an electrical signal proportional to a current passing through the hollow core. This electrical signal can then be used to determine the isolation resistance of the fuel cell.
    Type: Application
    Filed: December 28, 2021
    Publication date: June 29, 2023
    Inventors: Matthew K. McClory, Daniel Charles Folick, Dakota Kelley
  • Publication number: 20230207838
    Abstract: A fuel cell system includes a plurality of fuel cell units each configured to generate lower-voltage DC power. The fuel cell system includes a plurality of DC-DC converters each electrically connected to each of the fuel cell units and configured to convert the lower-voltage DC power to higher-voltage DC power. The fuel cell system includes a primary load power conversion unit electrically connected to the plurality of DC-DC converters and configured to output a primary load. The fuel cell system includes an auxiliary load power conversion unit electrically connected to the plurality of DC-DC converters and configured to output an auxiliary load.
    Type: Application
    Filed: December 28, 2021
    Publication date: June 29, 2023
    Inventors: Daniel Charles Folick, Matthew K. McClory, Dakota Kelley