Patents by Inventor Dale Hall

Dale Hall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220290723
    Abstract: A torque-transfer component has splines configured for engaging a corresponding feature of another component, at least a portion of each spline being hardened before a friction-reducing surface coating is applied to the splines. The splines are preferably hardened by nitriding, carburizing, induction hardening, or laser hardening, and the friction-reducing coating preferably comprises diamond-like carbon or tungsten carbide. The coating can be applied using, for example, physical vapor deposition, chemical vapor deposition, chemically assisted physical vapor deposition, autocatalytic electroless deposition, electroplating, or an oxygen fuel gun.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 15, 2022
    Applicant: Textron Innovations Inc.
    Inventors: Ron Woods, Gary Dale Hall, Scott David Poster, Lance William Weihmuller, Charles Hubert Speller
  • Patent number: 9747691
    Abstract: The technology disclosed relates to tracking movement of a real world object in three-dimensional (3D) space. In particular, it relates to mapping, to image planes of a camera, projections of observation points on a curved volumetric model of the real world object. The projections are used to calculate a retraction of the observation points at different times during which the real world object has moved. The retraction is then used to determine translational and rotational movement of the real world object between the different times.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: August 29, 2017
    Assignee: LEAP MOTION, INC.
    Inventors: David S. Holz, W. Dale Hall
  • Publication number: 20150302576
    Abstract: The technology disclosed relates to tracking movement of a real world object in three-dimensional (3D) space. In particular, it relates to mapping, to image planes of a camera, projections of observation points on a curved volumetric model of the real world object. The projections are used to calculate a retraction of the observation points at different times during which the real world object has moved. The retraction is then used to determine translational and rotational movement of the real world object between the different times.
    Type: Application
    Filed: July 2, 2015
    Publication date: October 22, 2015
    Applicant: LEAP MOTION, INC.
    Inventors: David S. Holz, W. Dale Hall
  • Patent number: 9105103
    Abstract: The technology disclosed relates to tracking movement of a real world object in three-dimensional (3D) space. In particular, it relates to mapping, to image planes of a camera, projections of observation points on a curved volumetric model of the real world object. The projections are used to calculate a retraction of the observation points at different times during which the real world object has moved. The retraction is then used to determine translational and rotational movement of the real world object between the different times.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: August 11, 2015
    Assignee: Leap Motion, Inc.
    Inventors: David Holz, W. Dale Hall
  • Publication number: 20140205146
    Abstract: The technology disclosed relates to tracking movement of a real world object in three-dimensional (3D) space. In particular, it relates to mapping, to image planes of a camera, projections of observation points on a curved volumetric model of the real world object. The projections are used to calculate a retraction of the observation points at different times during which the real world object has moved. The retraction is then used to determine translational and rotational movement of the real world object between the different times.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 24, 2014
    Applicant: Leap Motion, Inc.
    Inventors: David HOLZ, W. Dale Hall
  • Patent number: 8636048
    Abstract: The tire run-flat ring removal and installation machine includes three basic embodiments, each having a tire support table (14) and actuators for removing and/or reinstalling the run-flat ring (R) in the tire (T). The actuators may be hydraulically, pneumatically, or electromechanically powered, and save the technician considerable time and effort in the process.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: January 28, 2014
    Inventors: James R. Carawan, Monica L. Carawan, Al Turner, Jennifer Turner, Dale Hall
  • Patent number: 8620397
    Abstract: A method and apparatus are described that permit an analyte concentration to be estimated from a measurement in the presence of compounds that interfere with the measurement. The method reduces the error in the analyte concentration in the presence of interferents. The method includes the use of a set of measurements obtained for a large population having a range of known analyte and interfering compound concentrations. From a sample measurement, which may or may not be one of the population, likely present interferents are identified, and a calibration vector is calculated.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: December 31, 2013
    Assignee: OptiScan Biomedical Corporation
    Inventors: Bernhard B. Sterling, W. Dale Hall, Kenneth G. Witte, Mark Wechsler, Peng Zheng, Richard Keenan
  • Patent number: 8140140
    Abstract: An apparatus for analyzing the composition of bodily fluid. The apparatus comprises a fluid handling network including a patient end configured to maintain fluid communication with a bodily fluid in a patient; and a pump unit in operative engagement with the fluid handling network. The pump unit has an infusion mode in which the pump unit is operable to deliver infusion fluid to the patient through the patient end, and a sample draw mode in which the pump unit is operable to draw a sample of the bodily fluid from the patient through the patient end. The apparatus further comprises a spectroscopic analyzer positioned to analyze at least a portion of the sample; a processor in communication with or incorporated into the spectroscopic analyzer; and stored program instructions executable by the processor to obtain measurements of two or more properties of the sample.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: March 20, 2012
    Assignee: OptiScan Biomedical Corporation
    Inventors: Bernhard B. Sterling, James R. Braig, Kenneth G. Witte, Peter Rule, Richard Keenan, W. Dale Hall
  • Publication number: 20100234703
    Abstract: In some embodiments, an apparatus analyzes the composition of bodily fluid. The apparatus comprises a fluid handling network including a patient end configured to maintain fluid communication with a bodily fluid in a patient and at least one pump intermittently operable to draw a sample of bodily fluid from the patient. The apparatus further comprises a fluid analyzer positioned to analyze at least a portion of the sample and measure the presence of two or more analytes. Also disclosed is a method for analyzing the composition of a bodily fluid in a patient. The method comprises drawing a sample of the bodily fluid of the patient through a fluid handling network configured to maintain fluid communication with a bodily fluid in a patient. The method further comprises analyzing the at least a portion of the sample in a fluid analyzer to estimate the concentration of two or more analytes in the sample.
    Type: Application
    Filed: May 24, 2010
    Publication date: September 16, 2010
    Inventors: Bernhard B. Sterling, James R. Braig, Peter Rule, W. Dale Hall, Mark Wechsler, Jenifer H. Gable
  • Publication number: 20100227519
    Abstract: A product and method of manufacture is described for a highly filled activated carbon material with a polymer surface layer for strength.
    Type: Application
    Filed: March 12, 2007
    Publication date: September 9, 2010
    Applicant: MEADWESTVACO CORPORATION
    Inventors: Robert Randall Soper, Roger Dale Hall, Frederick Joseph Bures, JR., Michael Ford Tschantz
  • Publication number: 20100221762
    Abstract: A method and apparatus are described that permit an analyte concentration to be estimated from a measurement in the presence of compounds that interfere with the measurement. The method reduces the error in the analyte concentration in the presence of interferents. The method includes the use of a set of measurements obtained for a large population having a range of known analyte and interfering compound concentrations. From a sample measurement, which may or may not be one of the population, likely present interferents are identified, and a calibration vector is calculated.
    Type: Application
    Filed: October 5, 2009
    Publication date: September 2, 2010
    Applicant: OPTISCAN BIOMEDICAL CORPORATION
    Inventors: Bernhard B. Sterling, W. Dale Hall, Kenneth G. Witte, Mark Wechsler, Peng Zheng, Richard Keenan
  • Patent number: 7722537
    Abstract: An apparatus for analyzing the composition of bodily fluid. The apparatus comprises a fluid handling network including a patient end configured to maintain fluid communication with a bodily fluid in a patient and at least one pump intermittently operable to draw a sample of bodily fluid from the patient. The apparatus further comprises a fluid analyzer positioned to analyze at least a portion of the sample and measure the presence of two or more analytes. Also disclosed is a method for analyzing the composition of a bodily fluid in a patient. The method comprises drawing a sample of the bodily fluid of the patient through a fluid handling network configured to maintain fluid communication with a bodily fluid in a patient. The method further comprises analyzing the at least a portion of the sample in a fluid analyzer to estimate the concentration of two or more analytes in the sample.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: May 25, 2010
    Assignee: OptiScan Biomedical Corp.
    Inventors: Bernhard B. Sterling, James R. Braig, Peter Rule, W. Dale Hall, Mark Wechsler, Jennifer H. Gable
  • Publication number: 20100030137
    Abstract: An apparatus is provided for monitoring a predetermined parameter of a patient's body fluid while infusing an infusion fluid into the patient. The apparatus comprises an infusion line and a catheter configured for insertion into a blood vessel of the patient, and a reversible infusion pump connected between a source of an infusion fluid and the infusion line and catheter. The apparatus further comprises a body fluid sensor assembly mounted in fluid communication with the infusion line and which includes a first sensor and a sample cell. The first sensor provides a signal indicative of a predetermined parameter of any fluid present in the infusion line. The sample cell is substantially transmissive to light comprising a wavelength ?. The apparatus further comprises a controller that is configured to operate the infusion pump in a forward direction so as to pump the infusion fluid through the infusion line and catheter for infusion into the patient.
    Type: Application
    Filed: July 28, 2009
    Publication date: February 4, 2010
    Applicant: OPTISCAN BIOMEDICAL CORPORATION
    Inventors: W. Dale Hall, David N. Callicoat, Jennifer H. Gable, James R. Braig, Kenneth G. Witte, Mark Wechsler, Peter Rule, Richard Keenan
  • Publication number: 20090045342
    Abstract: A method and apparatus are described that permit an analyte concentration to be estimated from a measurement in the presence of compounds that interfere with the measurement. The method reduces the error in the analyte concentration in the presence of interferents. The method includes the use of a set of measurements obtained for a large population having a range of known analyte and interfering compound concentrations. From a sample measurement, which may or may not be one of the population, likely present interferents are identified, and a calibration vector is calculated.
    Type: Application
    Filed: June 16, 2008
    Publication date: February 19, 2009
    Inventors: Bernhard B. Sterling, W. Dale Hall, Kenneth G. Witte, Mark Wechsler, Peng Zheng, Richard Keenan
  • Patent number: 7388202
    Abstract: A method and apparatus are described that permit an analyte concentration to be estimated from a measurement in the presence of compounds that interfere with the measurement. The method reduces the error in the analyte concentration in the presence of interferents. The method includes the use of a set of measurements obtained for a large population having a range of known analyte and interfering compound concentrations. From a sample measurement, which may or may not be one of the population, likely present interferents are identified, and a calibration vector is calculated.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: June 17, 2008
    Assignee: OptiScan Biomedical Corporation
    Inventors: Bernhard B. Sterling, W. Dale Hall, Kenneth G. Witte, Mark Wechsler, Peng Zheng, Richard Keenan
  • Publication number: 20080112853
    Abstract: Method and apparatus are described that permit an analyte concentration to be estimated from a measurement in the presence of compounds that interfere with the measurement. The method reduces the error in the analyte concentration in the presence of interferents. The method includes the use of a set of measurements obtained for a large population having a range of known analyte and interfering compound concentrations. From a sample measurement, which may or may not be one of the population, interferents likely to be present are identified, and a calibration coefficient is calculated. The calibration coefficient may be applied to the measurement to estimate the analyte concentration. In some implementations, the calibration coefficient may be determined as a weighted average of single interferent calibration coefficients. In some embodiments, the sample measurement includes a spectroscopic measurement.
    Type: Application
    Filed: August 15, 2007
    Publication date: May 15, 2008
    Inventor: W. Dale Hall
  • Patent number: 7050157
    Abstract: A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: May 23, 2006
    Assignee: OptiScan Biomedical Corp.
    Inventors: James R. Braig, Peter Rule, Robert D. Gaffney, Philip C. Hartstein, Julian M. Cortella, Kenneth I. Li, Bernhard B. Sterling, Peng Zheng, W. Dale Hall, Kenneth G. Witte, Mark D. Agostino, Daniel S. Goldberger
  • Patent number: 6917038
    Abstract: An analyte detection system non-invasively determines the concentration of an analyte in a sample generating a sample infrared signal indicative of the concentration of the analyte in the sample. The detection system includes a window assembly for receiving the sample infrared signal. The window assembly is adapted to allow the sample infrared signal to transmit therethrough, and generates a window infrared signal. The detection system further includes at least one detector configured to receive both the window infrared signal and the sample infrared signal transmitted through the window assembly. The detector is further adapted to generate a detector signal in response thereto. The detection system further includes a correction module configured to generate a corrected detector signal indicative of the concentration of the analyte in the sample.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: July 12, 2005
    Assignee: Optiscan Biomedical Corporation
    Inventors: Peng Zheng, Jennifer H. Gable, W. Dale Hall, Kenneth G. Witte, James R. Braig
  • Patent number: 6825044
    Abstract: A device and method for determining analyte concentrations within a material sample are provided. A modulating temperature gradient is induced in the sample and resultant, emitted infrared radiation is measured at selected analyte absorbance peaks and reference wavelengths. The modulating temperature gradient is controlled by a surface temperature modulation. A transfer function relating the surface temperature modulation to a modulation of the measured infrared radiation is provided. Phase and magnitude differences in the transfer function are detected. These phase and magnitude differences, having a relationship to analyte concentration, are measured, correlated and processed to determine analyte concentration in the material sample. A method for adjusting an analyte measurement is provided. The method provides a hydration correction process for calibration and correction whereby analyte concentrations within the material sample may be determined.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: November 30, 2004
    Assignee: Optiscan Biomedical Corporation
    Inventors: Peng Zheng, Jennifer H. Gable, W. Dale Hall, Kenneth G. Witte, James R. Braig
  • Patent number: 6731961
    Abstract: A device and method for determining analyte concentrations within a material sample are provided. A modulating temperature gradient is induced in the sample and resultant, emitted infrared radiation is measured at selected analyte absorbance peaks and reference wavelengths. The modulating temperature gradient is controlled by a surface temperature modulation. One embodiment provides a transfer function relating the surface temperature modulation to a modulation of the measured infrared radiation. Phase and magnitude differences in the transfer function are detected in the presence of the sought-after analyte. These phase and magnitude differences, having a relationship to analyte concentration, are measured, correlated and processed to determine analyte concentration in the material sample. Another embodiment provides a method for transforming thermal phase spectra to absorption spectra for consistent determination of analyte concentration within the sample.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: May 4, 2004
    Assignee: OptiScan Biomedical Corp.
    Inventors: James R. Braig, W. Dale Hall, Casper W. Barnes, Peng Zheng, Jennifer H. Gable