Patents by Inventor Dale Hancock

Dale Hancock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929824
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Grant
    Filed: February 22, 2023
    Date of Patent: March 12, 2024
    Assignee: Entropic Communications, LLC
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20230254058
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Application
    Filed: February 22, 2023
    Publication date: August 10, 2023
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Patent number: 11616585
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: March 28, 2023
    Assignee: Entropic Communications, LLC
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Patent number: 11431427
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: August 30, 2022
    Assignee: Entropic Communications, LLC
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20220069930
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 3, 2022
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Patent number: 11139902
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: October 5, 2021
    Assignee: Entropic Communications LLC
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20200295858
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 17, 2020
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20200280382
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Application
    Filed: October 8, 2019
    Publication date: September 3, 2020
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblaqtt, Keith Bargroff
  • Patent number: 10439746
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: October 8, 2019
    Assignee: Entropic Communications, LLC
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20180102862
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Application
    Filed: December 4, 2017
    Publication date: April 12, 2018
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Patent number: 9853757
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: December 26, 2017
    Assignee: Entropic Communications, LLC
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20170346519
    Abstract: A cascadable AGC amplifier in a signal distribution system includes a low noise cascadable amplifier having a through path and a cascadable output. The cascadable amplifier is also configured to provide AGC over a predetermined input power range. The cascadable AGC amplifier can be configured to provide gain or attenuation. When the cascadable AGC amplifier is implemented in a signal distribution system, typically as part of a signal distribution device, an input signal can be gain controlled and supplied to multiple signal paths without distortion due to degradation of signal to noise ratio or distortion due to higher order amplifier products. The distributed signal is not significantly degraded by distortion regardless of the number of cascadable AGC amplifiers connected in series or the position of the cascadable AGC amplifier in the signal distribution system.
    Type: Application
    Filed: October 14, 2015
    Publication date: November 30, 2017
    Inventors: Keith BARGROFF, Dale HANCOCK
  • Patent number: 9413476
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: August 9, 2016
    Assignee: ENTROPIC COMMUNICATIONS, LLC
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20160191182
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 30, 2016
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20160072534
    Abstract: A cascadable AGC amplifier in a signal distribution system includes a low noise cascadable amplifier having a through path and a cascadable output. The cascadable amplifier is also configured to provide AGC over a predetermined input power range. The cascadable AGC amplifier can be configured to provide gain or attenuation. When the cascadable AGC amplifier is implemented in a signal distribution system, typically as part of a signal distribution device, an input signal can be gain controlled and supplied to multiple signal paths without distortion due to degradation of signal to noise ratio or distortion due to higher order amplifier products. The distributed signal is not significantly degraded by distortion regardless of the number of cascadable AGC amplifiers connected in series or the position of the cascadable AGC amplifier in the signal distribution system.
    Type: Application
    Filed: October 14, 2015
    Publication date: March 10, 2016
    Inventors: Keith BARGROFF, Dale HANCOCK
  • Publication number: 20150162998
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Application
    Filed: August 4, 2014
    Publication date: June 11, 2015
    Inventors: Branislav A. Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Patent number: 8892026
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: November 18, 2014
    Assignee: Entropic Communications, Inc.
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20120099623
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 26, 2012
    Applicant: R.F. MAGIC, INC.
    Inventors: Branislav PETROVIC, Dale HANCOCK, Jeremy GOLDBLATT, Keith BARGROFF
  • Patent number: 8086170
    Abstract: An outdoor satellite receiving unit (ODU) receives several independent satellite signals, selects two signals with a switch matrix, downconverts the two signals to a bandstacked signal with a high and a low band signal, and outputs the bandstacked signal on the same cable to receiver units. Several satellite signals can be selected in groups of two or more and output to independent receiver units. Signal selecting is performed at the received radio frequency (RF) and bandstacking is performed with a single downconversion step to an intermediate frequency (IF). Channel stacking on the same cable of more than two channels from several satellites can be achieved by using frequency agile downconverters and bandpass filters prior to combining at the IF output. A slow transitioning switch minimizes signal disturbances when switching and maintains input impedance at a constant value.
    Type: Grant
    Filed: January 19, 2008
    Date of Patent: December 27, 2011
    Assignee: RF Magic, Inc.
    Inventors: Branislav Petrovic, Dale Hancock, Jeremy Goldblatt, Keith Bargroff
  • Publication number: 20090239491
    Abstract: A cascadable AGC amplifier in a signal distribution system includes a low noise cascadable amplifier having a through path and a cascadable output. The cascadable amplifier is also configured to provide AGC over a predetermined input power range. The cascadable AGC amplifier can be configured to provide gain or attenuation. When the cascadable AGC amplifier is implemented in a signal distribution system, typically as part of a signal distribution device, an input signal can be gain controlled and supplied to multiple signal paths without distortion due to degradation of signal to noise ratio or distortion due to higher order amplifier products. The distributed signal is not significantly degraded by distortion regardless of the number of cascadable AGC amplifiers connected in series or the position of the cascadable AGC amplifier in the signal distribution system.
    Type: Application
    Filed: June 3, 2009
    Publication date: September 24, 2009
    Applicant: RF MAGIC, INC.
    Inventors: Keith BARGROFF, Dale HANCOCK