Patents by Inventor Dale R. Du Bois

Dale R. Du Bois has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7777198
    Abstract: Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: August 17, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Thomas Nowak, Dale R. Du Bois, Sanjeev Baluja, Scott A. Hendrickson, Dustin W. Ho, Andrzei Kaszuba, Tom K. Cho
  • Publication number: 20090314211
    Abstract: Embodiments described herein generally provide a lift pin assembly having increased wafer placement accuracy, repeatability, reliability, and corrosion resistance. In one embodiment, a lift pin assembly for positioning a substrate relative to a substrate support is provided. The lift pin assembly comprises a lift pin comprising a pin shaft, a pin head coupled with a first end of the pin shaft for supporting the substrate, and a shoulder coupled with a second end of the pin shaft. The lift pin assembly further comprises a cylindrical body slidably coupled with the pin shaft and a locking pin for preventing the cylindrical body from sliding along the shaft, wherein the shoulder has a through-hole dimensioned to accommodate the locking pin.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 24, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Dale R. Du Bois, Mark A. Fodor, Karthik Janakiraman, Juan Carlos Rocha-Alvarez
  • Publication number: 20090236214
    Abstract: An apparatus and method are provided for controlling the intensity and distribution of a plasma discharge in a plasma chamber. In one embodiment, a shaped electrode is embedded in a substrate support to provide an electric field with radial and axial components inside the chamber. In another embodiment, the face plate electrode of the showerhead assembly is divided into zones by isolators, enabling different voltages to be applied to the different zones. Additionally, one or more electrodes may be embedded in the chamber side walls.
    Type: Application
    Filed: March 20, 2008
    Publication date: September 24, 2009
    Inventors: Karthik Janakiraman, Thomas Nowak, Juan Carlos Rocha-Alvarez, Mark A. Fodor, Dale R. Du Bois, Amit Bansal, Mohamad Ayoub, Eller Y. Juco, Visweswaren Sivaramakrishnan, Hichem M'Saad
  • Patent number: 7566891
    Abstract: Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: July 28, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Thomas Nowak, Dale R. Du Bois, Sanjeev Baluja, Scott A. Hendrickson, Dustin W. Ho, Andrzei Kaszuba, Tom K. Cho
  • Publication number: 20090017635
    Abstract: The present invention comprises an apparatus and method for etching at a substrate edge region. In one embodiment, the apparatus comprises a chamber having a process volume, a substrate support arranged inside the process volume and having a substrate support surface, a plasma generator coupled to the chamber and configured to supply an etching agent in a plasma phase to a peripheral region of the substrate support surface, and a gas delivery assembly coupled to a gas source for generating a radial gas flow over the substrate support surface from an approximately central region of the substrate support surface toward the peripheral region of the substrate support surface.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 15, 2009
    Inventors: Ashish Shah, Ganesh Balasubramanian, Dale R. Du Bois, Mark A. Fodor, Eui Kyoon Kim, Chiu Chan, Karthik Janakiraman, Thomas Nowak, Joseph C. Werner, Visweswaren Sivaramakrishnan, Mohamad Ayoub, Amir Al-Bayati, Jianhua Zhou
  • Publication number: 20090017228
    Abstract: The present invention comprises an apparatus and method for centering a substrate in a process chamber. In one embodiment, the apparatus comprises a substrate support having a support surface adapted to receive the placement of a substrate and a reference axis substantially perpendicular to the support surface, and a plurality of centering members extending above the support surface. Each centering member is biased into a first position and is movable to a second position by interacting with an opposing member. A movement between the first position and the second position thereby causes each centering member to releasably engage with a peripheral edge of the substrate to push the substrate in a direction toward the reference axis.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 15, 2009
    Inventors: Dale R. Du Bois, Ganesh Balasubramanian, Mark A. Fodor, Chiu Chan, Karthik Janakiraman
  • Publication number: 20070295012
    Abstract: A re-circulating cooling system can be used with a curing system in order to reduce the exhaust requirements for the system. Further, using a cooling fluid such as nitrogen reduces the production of ozone and the sealing requirements for the system. A simple heat exchanger can be used between return and supply reservoirs in order to remove heat added to the re-circulating fluid during circulation past the curing radiation source. The nitrogen can come from a nitrogen source, or from a membrane or other device operable to split feed gas into its molecular components to provide a source of gas rich in nitrogen. An ozone destruction unit can be used with such a cooling system to reduce the amount of ozone to acceptable levels, and to minimize consumption of the nitrogen. A catalyst can be used to deplete the ozone that does not get consumed during the reaction.
    Type: Application
    Filed: November 3, 2006
    Publication date: December 27, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Dustin W. Ho, Juan Carlos Rocha-Alvarez, Dale R. Du Bois, Scott A. Hendrickson, Sanjeev Baluja, Ndanka O. Mukuti
  • Publication number: 20070298167
    Abstract: A re-circulating cooling system can be used with a curing system in order to reduce the exhaust requirements for the system. Further, using a cooling fluid such as nitrogen reduces the production of ozone and the sealing requirements for the system. A simple heat exchanger can be used between return and supply reservoirs in order to remove heat added to the re-circulating fluid during circulation past the curing radiation source. The nitrogen can come from a nitrogen source, or from a membrane or other device operable to split feed gas into its molecular components to provide a source of gas rich in nitrogen. An ozone destruction unit can be used with such a cooling system to reduce the amount of ozone to acceptable levels, and to minimize consumption of the nitrogen. A catalyst can be used to deplete the ozone that does not get consumed during the reaction.
    Type: Application
    Filed: November 6, 2006
    Publication date: December 27, 2007
    Applicant: Applied Materials, Inc.
    Inventors: DUSTIN W. HO, Juan Carlos Rocha-Alvarez, Dale R. Du Bois, Scott A. Hendrickson, Sanjeev Baluja, Ndanka O. Mukuti
  • Patent number: 6685779
    Abstract: According to one aspect of the invention, a method of processing a wafer is provided. The wafer is located in a wafer processing chamber of a system for processing a wafer. A silicon layer is then formed on the wafer while the wafer is located in the wafer processing chamber. The wafer is then transferred from the wafer processing chamber to a loadlock chamber of the system. Communication between the processing chamber and the loadlock chamber is closed off. The wafer is then exposed to ozone gas while located in the loadlock chamber, whereafter the wafer is removed from the loadlock chamber out of the system.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: February 3, 2004
    Assignee: Applied Materials, Inc.
    Inventors: David K Carlson, Paul B. Comita, Norma B. Riley, Dale R. Du Bois
  • Patent number: 6489220
    Abstract: A system for processing a wafer is provided. Ultraviolet light radiates through a first amount of oxygen gas in an ozone generation chamber so that the first amount of oxygen gas is converted to a first amount of ozone gas. The first amount of ozone gas flows from the ozone generation chamber into a loadlock chamber and a wafer is exposed to the first amount of ozone gas. The ultraviolet light also radiates through a window and then through a second amount of oxygen gas in the loadlock chamber so that the second amount of unconverted gas is converted to a second amount of ozone gas. The wafer held by the wafer holder is also exposed to the second amount of ozone gas.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: December 3, 2002
    Assignee: Applied Materials, Inc.
    Inventors: David K. Carlson, Dale R. Du Bois
  • Publication number: 20020148563
    Abstract: According to one aspect of the invention, a method of processing a wafer is provided. The wafer is located in a wafer processing chamber of a system for processing a wafer. A silicon layer is then formed on the wafer while the wafer is located in the wafer processing chamber. The wafer is then transferred from the wafer processing chamber to a loadlock chamber of the system. Communication between the processing chamber and the loadlock chamber is closed off. The wafer is then exposed to ozone gas while located in the loadlock chamber, whereafter the wafer is removed from the loadlock chamber out of the system.
    Type: Application
    Filed: February 11, 2002
    Publication date: October 17, 2002
    Applicant: Applied Materials, Inc.
    Inventors: David K. Carlson, Paul B. Comita, Norma B. Riley, Dale R. Du Bois
  • Publication number: 20020127826
    Abstract: A system for processing a wafer is provided. Ultraviolet light radiates through a first amount of oxygen gas in an ozone generation chamber so that the first amount of oxygen gas is converted to a first amount of ozone gas. The first amount of ozone gas flows from the ozone generation chamber into a loadlock chamber and a wafer is exposed to the first amount of ozone gas. The ultraviolet light also radiates through a window and then through a second amount of oxygen gas in the loadlock chamber so that the second amount of unconverted gas is converted to a second amount of ozone gas. The wafer held by the wafer holder is also exposed to the second amount of ozone gas.
    Type: Application
    Filed: May 6, 2002
    Publication date: September 12, 2002
    Inventors: David K. Carlson, Dale R. Du Bois
  • Publication number: 20020115266
    Abstract: A system for processing a wafer is provided. Ultraviolet light radiates through a first amount of oxygen gas in an ozone generation chamber so that the first amount of oxygen gas is converted to a first amount of ozone gas. The first amount of ozone gas flows from the ozone generation chamber into a loadlock chamber and a wafer is exposed to the first amount of ozone gas. The ultraviolet light also radiates through a window and then through a second amount of oxygen gas in the loadlock chamber so that the second amount of unconverted gas is converted to a second amount of ozone gas. The wafer held by the wafer holder is also exposed to the second amount of ozone gas.
    Type: Application
    Filed: February 16, 2001
    Publication date: August 22, 2002
    Applicant: Applied Materials, Inc.
    Inventors: David K. Carlson, Dale R. Du Bois
  • Patent number: 6436194
    Abstract: A system for processing a wafer is provided. Ultraviolet light radiates through a first amount of oxygen gas in an ozone generation chamber so that the first amount of oxygen gas is converted to a first amount of ozone gas. The first amount of ozone gas flows from the ozone generation chamber into a loadlock chamber and a wafer is exposed to the first amount of ozone gas. The ultraviolet light also radiates through a window and then through a second amount of oxygen gas in the loadlock chamber so that the second amount of unconverted gas is converted to a second amount of ozone gas. The wafer held by the wafer holder is also exposed to the second amount of ozone gas.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: August 20, 2002
    Assignee: Applied Materials, Inc.
    Inventors: David K. Carlson, Dale R. Du Bois
  • Patent number: 6376387
    Abstract: According to one aspect of the invention, a method of processing a wafer is provided. The wafer is located in a wafer processing chamber of a system for processing a wafer. A silicon layer is then formed on the wafer while the wafer is located in the wafer processing chamber. The wafer is then transferred from the wafer processing chamber to a loadlock chamber of the system. Communication between the processing chamber and the loadlock chamber is closed off. The wafer is then exposed to ozone gas while located in the loadlock chamber, whereafter the wafer is removed from the loadlock chamber out of the system.
    Type: Grant
    Filed: July 9, 1999
    Date of Patent: April 23, 2002
    Assignee: Applied Materials, Inc.
    Inventors: David K Carlson, Paul B. Comita, Norma B. Riley, Dale R. Du Bois
  • Publication number: 20010014541
    Abstract: According to one aspect of the invention, a method of processing a wafer is provided. The wafer is located in a wafer processing chamber of a system for processing a wafer. A silicon layer is then formed on the wafer while the wafer is located in the wafer processing chamber. The wafer is then transferred from the wafer processing chamber to a loadlock chamber of the system. Communication between the processing chamber and the loadlock chamber is closed off. The wafer is then exposed to ozone gas while located in the loadlock chamber, whereafter the wafer is removed from the loadlock chamber out of the system.
    Type: Application
    Filed: July 9, 1999
    Publication date: August 16, 2001
    Inventors: DAVID K. CARLSON, PAUL B. COMITA, NORMA B. RILEY, DALE R. DU BOIS
  • Patent number: 6170433
    Abstract: A semiconductor processing system includes a processing chamber, a rotatable shaft extending into the chamber, and a wafer holder in the chamber. The rotatable shaft has a gas flow passage therethrough. The wafer holder is capable of supporting a wafer in position in the chamber so that the processing gas flow passage directs flow onto a face of the wafer.
    Type: Grant
    Filed: July 23, 1998
    Date of Patent: January 9, 2001
    Assignee: Applied Materials, Inc.
    Inventor: Dale R. Du Bois
  • Patent number: 5326725
    Abstract: A clamping ring having a downwardly extending finger that mates with a pocket in the periphery of a susceptor for supporting a wafer in a chemical vapor deposition chamber, provides alignment of the clamping ring, the wafer and the susceptor. A source of inert gas connected to the pocket provides a positive pressure in the pocket that prevents reactive gas in the chamber from reaching the edge and backside of the wafer. A source of vacuum connected to the susceptor support surface ensures good contact between the wafer and the susceptor.The clamping ring also has a lip extending over the top surface of the wafer having a rear surface that has a negative angle with respect to the upper surface of the clamping ring, providing a knife edge seal to the wafer, reducing the area of contact between the clamping ring and the wafer and providing a reduced area of thermal contact between the clamping ring and the wafer.
    Type: Grant
    Filed: March 11, 1993
    Date of Patent: July 5, 1994
    Assignee: Applied Materials, Inc.
    Inventors: Semyon Sherstinsky, Charles C. Harris, Mei Chang, Dale R. Du Bois, James F. Roberts, Susan Telford, Ronald L. Rose, Meng C. Tseng, Karl A. Littau
  • Patent number: 5320680
    Abstract: A chemical vapor deposition apparatus comprising a hot wall reaction tube, one or more reaction gas preheaters, a reaction gas exhaust outlet, and substantially eddy free reaction gas flow control means for passing reaction gases in a substantially laminar flow from a preheater to the exhaust outlet. The gas flow control means includes a tube flange positioned to be in a substantially eddy free relationship with the end of the wafer boat zone, the flange having a curved surface means extending from the end of the wafer boat zone to the outer tube for directing the reaction gas flow out of or into the reaction zone while maintaining the gas in a state of substantially laminar flow. One reaction gas preheater comprises a first heating tube having a removable baffle. A second reaction gas preheater comprises a two wall cylindrical heater with inner surface deformations.
    Type: Grant
    Filed: April 25, 1991
    Date of Patent: June 14, 1994
    Assignee: Silicon Valley Group, Inc.
    Inventors: Arthur J. Learn, Dale R. Du Bois, Nicholas E. Miller, Richard A. Seilheimer