Patents by Inventor Dale R. Powers

Dale R. Powers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7672557
    Abstract: A method of fabricating an optical waveguide fiber that includes the steps of providing a cylindrical glass optical fiber preform having a longitudinally extending centerline hole, and closing the hole under conditions suitable to result in uniform and symmetric hole closure. The method may include first plugging a first end and a second end of the centerline hole to prevent gas flow therethrough. The method preferably involves closing the centerline hole of the preform by drawing the preform down into an optical waveguide fiber.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: March 2, 2010
    Assignee: Corning Incorporated
    Inventors: Martin W. Allen, Dana C. Bookbinder, Dipakbin Q. Chowdhury, Daniel W. Hawtof, Dale R. Powers
  • Patent number: 7076141
    Abstract: Optical waveguide fiber having low water peak as well as optical waveguide fiber preforms and methods of making optical waveguide fiber preforms from which low water peak and/or low hydrogen aged attenuation optical waveguide fibers are formed, including optical waveguide fiber and preforms made via OVD. The fibers may be hydrogen resistant, i.e. exhibit low hydrogen aged attenuation. A low water peak, hydrogen resistant optical waveguide fiber is disclosed which exhibits an optical attenuation at a wavelength of about 1383 nm which is less than or equal to an optical attenuation exhibited at a wavelength of about 1310 nm.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: July 11, 2006
    Assignee: Corning Incorporated
    Inventors: George E. Berkey, Dana C. Bookbinder, Richard M. Fiacco, Dale R. Powers
  • Patent number: 6944382
    Abstract: Optical waveguide fiber having low water peak as well as optical waveguide fiber preforms and methods of making optical waveguide fiber preforms from which low water peak and/or low hydrogen aged attenuation optical waveguide fibers are formed, including optical waveguide fiber and preforms made via OVD. The fibers may be hydrogen resistant, i.e. exhibit low hydrogen aged attenuation. A low water peak, hydrogen resistant optical waveguide fiber is disclosed which exhibits an optical attenuation at a wavelength of about 1383 nm which is less than or equal to an optical attenuation exhibited at a wavelength of about 1310 nm.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: September 13, 2005
    Assignee: Corning Incorporated
    Inventors: George E. Berkey, Dana C. Bookbinder, Richard M. Fiacco, Dale R. Powers
  • Patent number: 6904772
    Abstract: Optical waveguide fiber having low water peak as well as optical waveguide fiber preforms and methods of making optical waveguide fiber preforms from which low water peak and/or low hydrogen aged attenuation optical waveguide fibers are formed, including optical waveguide fiber and preforms made via OVD. The fibers may be hydrogen resistant, i.e. exhibit low hydrogen aged attenuation. A low water peak, hydrogen resistant optical waveguide fiber is disclosed which exhibits an optical attenuation at a wavelength of about 1383 nm which is less than or equal to an optical attenuation exhibited at a wavelength of about 1310 nm.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: June 14, 2005
    Assignee: Corning Incorporated
    Inventors: George E. Berkey, Dana C. Bookbinder, Richard M. Fiacco, Dale R. Powers
  • Patent number: 6870999
    Abstract: An isotopically-altered, silica based optical fiber is provided having lower losses, broader bandwidth, and broader Raman gain spectrum characteristics than conventional silica-based fiber. A heavier, less naturally abundant isotope of silicon or oxygen is substituted for a lighter, more naturally abundant isotope to shift the infrared absorption to a slightly longer wavelength. In one embodiment, oxygen-18 is substituted for the much more naturally abundant oxygen-16 at least in the core region of the fiber. The resulting isotopically-altered fiber has a minimum loss of 0.044 dB/km less than conventional fiber, and a bandwidth that is 17 percent broader for a loss range between 0.044-0.034 dB/km. The fiber may be easily manufactured with conventional fiber manufacturing equipment by way of a plasma chemical vapor deposition technique. When a 50 percent substitution of oxygen -18 for oxygen-16 is made in the core region of the fiber, the Raman gain spectrum is substantially broadened.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: March 22, 2005
    Assignee: Corning Incorporated
    Inventors: Douglas C. Allan, John T. Brown, Lisa C. Chacon, Adam J. G. Ellison, James C. Fajardo, Stuart Gray, Keith L. House, Karl W. Koch, III, Dale R. Powers, James A. West
  • Patent number: 6810197
    Abstract: An isotopically-altered, silica based optical fiber is provided having lower losses, broader bandwidth, and broader Raman gain spectrum characteristics than conventional silica-based fiber. A heavier, less naturally abundant isotope of silicon or oxygen is substituted for a lighter, more naturally abundant isotope to shift the infrared absorption to a slightly longer wavelength. In one embodiment, oxygen-18 is substituted for the much more naturally abundant oxygen-16 at least in the core region of the fiber. The resulting isotopically-altered fiber has a minimum loss of 0.044 dB/km less than conventional fiber, and a bandwidth that is 17 percent broader for a loss range between 0.044-0.034 dB/km. The fiber may be easily manufactured with conventional fiber manufacturing equipment by way of a plasma chemical vapor deposition technique. When a 50 percent substitution of oxygen-18 for oxygen-16 is made in the core region of the fiber, the Raman gain spectrum is substantially broadened.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: October 26, 2004
    Assignee: Corning Incorporated
    Inventors: Douglas C. Allan, John T. Brown, Lisa C. Chacon, Adam J. G. Ellison, James C. Fajardo, Stuart Gray, Keith L. House, Karl W. Koch, III, Dale R. Powers, James A. West
  • Publication number: 20040161216
    Abstract: Optical waveguide fiber having low water peak as well as optical waveguide fiber preforms and methods of making optical waveguide fiber preforms from which low water peak and/or low hydrogen aged attenuation optical waveguide fibers are formed, including optical waveguide fiber and preforms made via OVD. The fibers may be hydrogen resistant, i.e. exhibit low hydrogen aged attenuation. A low water peak, hydrogen resistant optical waveguide fiber is disclosed which exhibits an optical attenuation at a wavelength of about 1383 nm which is less than or equal to an optical attenuation exhibited at a wavelength of about 1310 nm.
    Type: Application
    Filed: February 6, 2004
    Publication date: August 19, 2004
    Inventors: George E. Berkey, Dana C. Bookbinder, Richard M. Fiacco, Dale R. Powers
  • Patent number: 6751987
    Abstract: Burners (14) are used to make glass bodies (19) from OMCTS. The burners have six concentric regions. Putting certain gases through the regions results in thicker bodies than can be achieved with existing techniques and with improved efficiency.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: June 22, 2004
    Assignee: Corning Incorporated
    Inventors: Laura J. Ball, Raymond E. Lindner, Mahendra Kumar Misra, Dale R. Powers, Michael H. Wasilewski
  • Publication number: 20040060327
    Abstract: A method of forming an optical fiber preform that includes providing a consolidated glass preform, depositing a layer of silica soot onto the consolidated glass preform to form a composite preform having a consolidated glass portion and a silica soot portion, and exposing the composite preform to an atmosphere containing a concentration of a deuterium compound for a time and at a temperature sufficient to cause the deuterium compound to penetrate the consolidated glass portion without pervading the entire glass portion. Preferably, the deuterium compound penetrates the glass portion to a desired depth.
    Type: Application
    Filed: September 15, 2003
    Publication date: April 1, 2004
    Inventors: George E Berkey, Dana C Bookbinder, Richard M Fiacco, Jeffrey T Kohli, Dale R Powers
  • Patent number: 6687444
    Abstract: Disclosed is a method of making a hydrogen resistant optical waveguide fiber. The soot preform is heated and immersed in a metal halide gas. A reduced metal species is thus incorporated into the glass soot prior to sintering or consolidation of the soot preform. A hydrogen absorption band around 1530 nm is substantially eliminated from waveguides made from a precursor gas treated preform.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: February 3, 2004
    Assignee: Corning Incorporated
    Inventors: A. Joseph Antos, Cynthia B. Giroux, Timothy L. Hunt, Dale R. Powers, Christine L. Tennent, William A. Whedon
  • Publication number: 20030200772
    Abstract: A method for forming a doped optical fiber includes drawing the optical fiber from a doped glass supply at a draw speed and a draw tension sufficient to introduce a heat aging defect in the optical fiber. The optical fiber is treated by maintaining the optical fiber within a treatment temperature range for a treatment time while preferably maintaining the optical fiber within a treatment tension range to reduce the tendency of the optical fiber to increase in attenuation over time following formation of the optical fiber. Apparatus are also provided.
    Type: Application
    Filed: April 30, 2002
    Publication date: October 30, 2003
    Inventors: John D. Foster, Daniel W. Hawtof, Claude E. Lacy, Daniel Mieczkowski, Ying Lisa Peng, Dale R. Powers, Richard A. Quinn, Jennifer L. Tarplee, Wanda J. Walczak
  • Patent number: 6597848
    Abstract: Disclosed is a dispersion compensating optical fiber that includes a core surrounded by a cladding layer of refractive index nCL. The core includes at least three radially adjacent regions, a central core region, a moat region having a refractive index nM that is sufficiently lower than nCL such that &Dgr;M≦−0.4%, and a ring region. As the ring region exhibits sufficiently high refractive index at a sufficiently long distance from the outer edge of the moat region, the fiber can exhibit low values of negative dispersion slope at low values of negative dispersion and yet exhibit good bending loss. This ring region is also capable of imparting to the fiber a relatively high cutoff wavelength, so that the present invention is particularly well suited for use in L-band systems. A particularly suitable fiber has an index profile in which that part of the ring region at the transition between the moat and the ring region has a refractive index such that its delta value is close to zero.
    Type: Grant
    Filed: April 26, 2000
    Date of Patent: July 22, 2003
    Assignee: Corning Incorporated
    Inventors: George E. Berkey, Lei Jiang, Dale R. Powers, V. Srikant
  • Publication number: 20030128955
    Abstract: An isotopically-altered, silica based optical fiber is provided having lower losses, broader bandwidth, and broader Raman gain spectrum characteristics than conventional silica-based fiber. A heavier, less naturally abundant isotope of silicon or oxygen is substituted for a lighter, more naturally abundant isotope to shift the infrared absorption to a slightly longer wavelength. In one embodiment, oxygen-18 is substituted for the much more naturally abundant oxygen-16 at least in the core region of the fiber. The resulting isotopically-altered fiber has a minimum loss of 0.044 dB/km less than conventional fiber, and a bandwidth that is 17 percent broader for a loss range between 0.044-0.034 dB/km. The fiber may be easily manufactured with conventional fiber manufacturing equipment by way of a plasma chemical vapor deposition technique. When a 50 percent substitution of oxygen-18 for oxygen-16 is made in the core region of the fiber, the Raman gain spectrum is substantially broadened.
    Type: Application
    Filed: December 18, 2002
    Publication date: July 10, 2003
    Inventors: Douglas C. Allan, John T. Brown, Lisa C. Chacon, Adam J. G. Ellison, James C. Fajardo, Stuart Gray, Keith L. House, Karl W. Koch, Dale R. Powers, James A. West
  • Patent number: 6590116
    Abstract: The present invention is directed to a process for purifying siloxane. The invention relates to a method of making a purified siloxane feedstock for use in the manufacturing of silica glass. The invention further relates to solid phase extracting impurities from a polyalkylsiloxane starting material.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: July 8, 2003
    Assignee: Corning Incorporated
    Inventors: Joseph S. Flynn, Dale R. Powers, Brian P. Strines
  • Patent number: 6477305
    Abstract: A cylindrical glass body having a low water content centerline region and method of manufacturing such a cylindrical glass body for use in the manufacture of optical waveguide fiber is disclosed. The centerline region of the cylindrical glass body has a water content sufficiently low such that an optical waveguide fiber made from the cylindrical glass body of the present invention exhibits an optical attenuation of less than about 0.35 dB/km, and preferably less than about 0.31 dB/km at a measured wavelength of 1380 nm. A low water content plug used in the manufacture of such a cylindrical glass body, an optical waveguide fiber having a low water peak, and an optical fiber communication system incorporating such an optical waveguide fiber is also disclosed.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: November 5, 2002
    Assignee: Corning Incorporated
    Inventors: George E. Berkey, Dana C. Bookbinder, Richard M. Fiacco, Cynthia B. Giroux, Daniel W. Hawtof, Dale R. Powers, V. Srikant
  • Publication number: 20020150365
    Abstract: Disclosed is a method of making a hydrogen resistant optical waveguide fiber. The soot preform is heated and immersed in a metal halide gas. A reduced metal species is thus incorporated into the glass soot prior to sintering or consolidation of the soot preform. A hydrogen absorption band around 1530 nm is substantially eliminated from waveguides made from a precursor gas treated preform.
    Type: Application
    Filed: June 17, 2002
    Publication date: October 17, 2002
    Inventors: A. Joseph Antos, Cynthia B. Giroux, Timothy L. Hunt, Dale R. Powers, Christine L. Tennent, William A. Whedon
  • Patent number: 6438999
    Abstract: Disclosed is a method of making a hydrogen resistant optical waveguide fiber. The soot preform is heated and then immersed in a GeCl4 gas. A reduced metal species is thus incorporated into the glass soot prior to sintering or consolidation of the soot preform. A hydrogen absorption band around 1530 nm is substantially eliminated from waveguides made from a precursor gas treated preform.
    Type: Grant
    Filed: July 15, 1998
    Date of Patent: August 27, 2002
    Assignee: Corning Incorporated
    Inventors: A. Joseph Antos, Cynthia B. Giroux, Timothy L. Hunt, Dale R. Powers, Christine L. Tennent, William A. Whedon
  • Publication number: 20020102083
    Abstract: Optical waveguide fiber having low water peak as well as optical waveguide fiber preforms and methods of making optical waveguide fiber preforms from which low water peak and/or low hydrogen aged attenuation optical waveguide fibers are formed, including optical waveguide fiber and preforms made via OVD. The fibers may be hydrogen resistant, i.e. exhibit low hydrogen aged attenuation. A low water peak, hydrogen resistant optical waveguide fiber is disclosed which exhibits an optical attenuation at a wavelength of about 1383 nm which is less than or equal to an optical attenuation exhibited at a wavelength of about 1310 nm.
    Type: Application
    Filed: December 14, 2001
    Publication date: August 1, 2002
    Inventors: George E. Berkey, Dana C. Bookbinder, Richard M. Fiacco, Dale R. Powers
  • Publication number: 20020078714
    Abstract: A method an apparatus for continuously producing optical waveguide fiber and preforms. A continuous supply of core cane is provided to a walled deposition chamber upon which glass soot is deposited to form a soot preform. The preform is passed through an aligned drying, consolidation and draw chambers from which an optical fiber may be drawn. In one embodiment, a plurality of burners are positioned at different radial distances from a longitudinal axis of the cane in the deposition chamber. One or more environmental seal(s) are provided to prevent process gasses or contaminants from flowing into or between the chambers.
    Type: Application
    Filed: December 13, 2001
    Publication date: June 27, 2002
    Inventors: Lindwood A. Bird, James H. Faler, Dale R. Powers, Bruce W. Reding, Manivannan Ravichandran
  • Patent number: 6378337
    Abstract: A method for preparing high-purity, bulk fused silica includes supplying silane gas, a gaseous fuel, and oxygen gas to a combustion burner. Silica particles are formed by passing the silane gas into a flame formed by the combustion reaction of the gaseous fuel with the oxygen gas while maintaining the ratio of the flow rate of the gaseous fuel to the flow rate of the silane gas no less than twelve and the ratio of the flow rate of the gaseous fuel to the flow rate of the oxygen gas no less than three. The silica particles formed are immediately deposited onto a hot bait to form a boule.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: April 30, 2002
    Assignee: Corning Incorporated
    Inventors: John T. Brown, Michael S. Dobbins, Christine E. Heckle, Robert E. McLay, Mahendra K. Misra, Dale R. Powers, Michael H. Wasilewski