Patents by Inventor Dale W. Martin

Dale W. Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9355936
    Abstract: Methods for bonding substrate surfaces, bonded substrate assemblies, and design structures for a bonded substrate assembly. Device structures of a product chip are formed using a first surface of a device substrate. A wiring layer of an interconnect structure for the device structures is formed on the product chip. The wiring layer is planarized. A temporary handle wafer is removably bonded to the planarized wiring layer. In response to removably bonding the temporary handle wafer to the planarized first wiring layer, a second surface of the device substrate, which is opposite to the first surface, is bonded to a final handle substrate. The temporary handle wafer is then removed from the assembly.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: May 31, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Edward C. Cooney, III, James S. Dunn, Dale W. Martin, Charles S. Musante, BethAnn Rainey Lawrence, Leathen Shi, Edmund J. Sprogis, Cornelia K. Tsang
  • Patent number: 9165819
    Abstract: According to a method herein, a first side of a substrate is implanted with a first material to change a crystalline structure of the first side of the substrate from a first crystalline state to a second crystalline state, after the first material is implanted. A second material is deposited on the first side of the substrate, after the first material is implanted. A first side of an insulator layer is bonded to the second material on the first side of the substrate. Integrated circuit devices are formed on a second side of the insulator layer, opposite the first side of the insulator layer, after the insulator layer is bonded to the second material. The integrated circuit devices are thermally annealed. The first material maintains the second crystalline state of the first side of the substrate during the annealing.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: October 20, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Alan B. Botula, Jeffrey E. Hanrahan, Mark D. Jaffe, Alvin J. Joseph, Dale W. Martin, Gerd Pfeiffer, James A. Slinkman
  • Publication number: 20150072504
    Abstract: According to a method herein, a first side of a substrate is implanted with a first material to change a crystalline structure of the first side of the substrate from a first crystalline state to a second crystalline state, after the first material is implanted. A second material is deposited on the first side of the substrate, after the first material is implanted. A first side of an insulator layer is bonded to the second material on the first side of the substrate. Integrated circuit devices are formed on a second side of the insulator layer, opposite the first side of the insulator layer, after the insulator layer is bonded to the second material. The integrated circuit devices are thermally annealed. The first material maintains the second crystalline state of the first side of the substrate during the annealing.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Inventors: Alan B. Botula, Jeffrey E. Hanrahan, Mark D. Jaffe, Alvin J. Joseph, Dale W. Martin, Gerd Pfeiffer, James A. Slinkman
  • Patent number: 8951896
    Abstract: According to a method herein, a first side of a substrate is implanted with a first material to change a crystalline structure of the first side of the substrate from a first crystalline state to a second crystalline state, after the first material is implanted. A second material is deposited on the first side of the substrate, after the first material is implanted. A first side of an insulator layer is bonded to the second material on the first side of the substrate. Integrated circuit devices are formed on a second side of the insulator layer, opposite the first side of the insulator layer, after the insulator layer is bonded to the second material. The integrated circuit devices are thermally annealed. The first material maintains the second crystalline state of the first side of the substrate during the annealing.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: February 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Jeffrey E. Hanrahan, Mark D. Jaffe, Alvin J. Joseph, Dale W. Martin, Gerd Pfeiffer, James A. Slinkman
  • Publication number: 20150004778
    Abstract: According to a method herein, a first side of a substrate is implanted with a first material to change a crystalline structure of the first side of the substrate from a first crystalline state to a second crystalline state, after the first material is implanted. A second material is deposited on the first side of the substrate, after the first material is implanted. A first side of an insulator layer is bonded to the second material on the first side of the substrate. Integrated circuit devices are formed on a second side of the insulator layer, opposite the first side of the insulator layer, after the insulator layer is bonded to the second material. The integrated circuit devices are thermally annealed. The first material maintains the second crystalline state of the first side of the substrate during the annealing.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: ALAN B. BOTULA, Jeffrey E. Hanrahan, Mark D. Jaffe, Alvin J. Joseph, Dale W. Martin, Gerd Pfeiffer, James A. Slinkman
  • Publication number: 20140209908
    Abstract: Methods for bonding substrate surfaces, bonded substrate assemblies, and design structures for a bonded substrate assembly. Device structures of a product chip are formed using a first surface of a device substrate. A wiring layer of an interconnect structure for the device structures is formed on the product chip. The wiring layer is planarized. A temporary handle wafer is removably bonded to the planarized wiring layer. In response to removably bonding the temporary handle wafer to the planarized first wiring layer, a second surface of the device substrate, which is opposite to the first surface, is bonded to a final handle substrate. The temporary handle wafer is then removed from the assembly.
    Type: Application
    Filed: April 1, 2014
    Publication date: July 31, 2014
    Applicant: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, James S. Dunn, Dale W. Martin, Charles S. Musante, BethAnn Rainey Lawrence, Leathen Shi, Edmund J. Sprogis, Cornelia K. Tsang
  • Patent number: 8778737
    Abstract: Methods for bonding substrate surfaces, bonded substrate assemblies, and design structures for a bonded substrate assembly. Device structures of a product chip are formed using a first surface of a device substrate. A wiring layer of an interconnect structure for the device structures is formed on the product chip. The wiring layer is planarized. A temporary handle wafer is removably bonded to the planarized wiring layer. In response to removably bonding the temporary handle wafer to the planarized first wiring layer, a second surface of the device substrate, which is opposite to the first surface, is bonded to a final handle substrate. The temporary handle wafer is then removed from the assembly.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, James S. Dunn, Dale W. Martin, Charles F. Musante, BethAnn Rainey, Leathen Shi, Edmund J. Sprogis, Cornelia K. Tsang
  • Patent number: 8679863
    Abstract: Methods are provided for fine tuning substrate resistivity. The method includes measuring a resistivity of a substrate after an annealing process, and fine tuning a subsequent annealing process to achieve a target resistivity of the substrate. The fine tuning is based on the measured resistivity.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Derrick Liu, Dale W. Martin, Gerd Pfeiffer
  • Publication number: 20130244348
    Abstract: Methods are provided for fine tuning substrate resistivity. The method includes measuring a resistivity of a substrate after an annealing process, and fine tuning a subsequent annealing process to achieve a target resistivity of the substrate. The fine tuning is based on the measured resistivity.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 19, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey P. GAMBINO, Derrick LIU, Dale W. MARTIN, Gerd PFEIFFER
  • Publication number: 20130105981
    Abstract: Methods for bonding substrate surfaces, bonded substrate assemblies, and design structures for a bonded substrate assembly. Device structures of a product chip are formed using a first surface of a device substrate. A wiring layer of an interconnect structure for the device structures is formed on the product chip. The wiring layer is planarized. A temporary handle wafer is removably bonded to the planarized wiring layer. In response to removably bonding the temporary handle wafer to the planarized first wiring layer, a second surface of the device substrate, which is opposite to the first surface, is bonded to a final handle substrate. The temporary handle wafer is then removed from the assembly.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Edward C. Cooney, III, James S. Dunn, Dale W. Martin, Charles F. Musante, BethAnn Rainey, Leathen Shi, Edmund J. Sprogis, Cornelia K. Tsang
  • Patent number: 7446007
    Abstract: A semiconductor structure includes a multi-layer spacer located adjacent and adjoining a sidewall of a topographic feature within the semiconductor structure. The multi-layer spacer includes a first spacer sub-layer comprising a deposited silicon oxide material laminated to a second spacer sub-layer comprising a material that is other than the deposited silicon oxide material. The first spacer sub-layer is recessed with respect to the second spacer sub-layer by a recess distance of no greater than a thickness of the first spacer sub-layer (and preferably from about 50 to about 150 angstroms). Such a recess distance is realized through use of a chemical oxide removal (COR) etchant that is self limiting for the deposited silicon oxide material with respect to a thermally grown silicon oxide material. Dimensional integrity and delamination avoidance is thus assured for the multi-layer spacer layer.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: November 4, 2008
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Marc W. Cantell, James R. Elliott, James V. Hart, III, Dale W. Martin
  • Patent number: 7378712
    Abstract: A gate stack structure. The structure includes (a) a semiconductor region and (b) a gate stack on top of the semiconductor region. The gate stack includes (i) a gate dielectric region on top of the semiconductor region, (ii) a first gate polysilicon region on top of the gate dielectric region, and (iii) a second gate polysilicon region on top of the first gate polysilicon region and doped with a type of dopants. The structure further includes (c) a diffusion barrier region and a spacer oxide region on a side wall of the gate stack. The diffusion barrier region (i) is sandwiched between the gate stack and the spacer oxide region and (ii) is in direct physical contact with both the first and second gate polysilicon regions, and (iii) comprises a material having a property of preventing a diffusion of oxygen-containing materials through the diffusion barrier region.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: May 27, 2008
    Assignee: International Business Machines Corporation
    Inventors: Dale W. Martin, Steven M. Shank, Michael C. Triplett, Deborah A. Tucker
  • Publication number: 20080116493
    Abstract: A semiconductor structure includes a multi-layer spacer located adjacent and adjoining a sidewall of a topographic feature within the semiconductor structure. The multi-layer spacer includes a first spacer sub-layer comprising a deposited silicon oxide material laminated to a second spacer sub-layer comprising a material that is other than the deposited silicon oxide material. The first spacer sub-layer is recessed with respect to the second spacer sub-layer by a recess distance of no greater than a thickness of the first spacer sub-layer (and preferably from about 50 to about 150 angstroms). Such a recess distance is realized through use of a chemical oxide removal (COR) etchant that is self limiting for the deposited silicon oxide material with respect to a thermally grown silicon oxide material. Dimensional integrity and delamination avoidance is thus assured for the multi-layer spacer layer.
    Type: Application
    Filed: November 17, 2006
    Publication date: May 22, 2008
    Inventors: James W. Adkisson, Marc W. Cantell, James R. Elliott, James V. Hart, Dale W. Martin
  • Patent number: 7303952
    Abstract: A method of fabricating polysilicon lines and polysilicon gates, the method of including: providing a substrate; forming a dielectric layer on a top surface of the substrate; forming a polysilicon layer on a top surface of the dielectric layer; implanting the polysilicon layer with N-dopant species, the N-dopant species about contained within the polysilicon layer; implanting the polysilicon layer with a nitrogen containing species, the nitrogen containing species essentially contained within the polysilicon layer.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: December 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Glenn C. MacDougall, Dale W. Martin, Kirk D. Peterson, Bruce W. Porth
  • Publication number: 20070194385
    Abstract: A gate stack structure. The structure includes (a) a semiconductor region and (b) a gate stack on top of the semiconductor region. The gate stack includes (i) a gate dielectric region on top of the semiconductor region, (ii) a first gate polysilicon region on top of the gate dielectric region, and (iii) a second gate polysilicon region on top of the first gate polysilicon region and doped with a type of dopants. The structure further includes (c) a diffusion barrier region and a spacer oxide region on a side wall of the gate stack. The diffusion barrier region (i) is sandwiched between the gate stack and the spacer oxide region and (ii) is in direct physical contact with both the first and second gate polysilicon regions, and (iii) comprises a material having a property of preventing a diffusion of oxygen-containing materials through the diffusion barrier region.
    Type: Application
    Filed: August 8, 2006
    Publication date: August 23, 2007
    Inventors: Dale W. Martin, Steven M. Shank, Michael C. Triplett, Deborah A. Tucker
  • Patent number: 7190007
    Abstract: The present invention provides a method of forming an ultra-thin and uniform layer of Si including the steps of providing a substrate having semiconducting regions separated by insulating regions; implanting dopants into the substrate to provide an etch differential doped portion in the semiconducting regions underlying an upper Si-containing surface of the semiconducting regions; forming a trench in the substrate including the semiconducting regions and the insulating regions; removing the etch differential doped portion from the semiconductor regions to produce a cavity underlying the upper surface of the semiconducting regions; and filling the trench with a trench dielectric, wherein the trench dielectric material encloses the cavity underlying the upper Si-containing surface of the semiconducting regions. The upper Si-containing surface of the semiconducting regions has a uniform thickness of less than about 100 ?.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: March 13, 2007
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Chung H. Lam, Randy W. Mann, Dale W. Martin
  • Patent number: 7157341
    Abstract: A structure and fabrication method for a gate stack used to define source/drain regions in a semiconductor substrate. The method comprises (a) forming a gate dielectric layer on top of the substrate, (b) forming a gate polysilicon layer on top of the gate dielectric layer, (c) implanting n-type dopants in a top layer of the gate polysilicon layer, (d) etching away portions of the gate polysilicon layer and the gate dielectric layer so as to form a gate stack on the substrate, and (e) thermally oxidizing side walls of the gate stack with the presence of a nitrogen-carrying gas. As a result, a diffusion barrier layer is formed at the same depth in the polysilicon material of the gate stack regardless of the doping concentration. Therefore, the n-type doped region of the gate stack has the same width as that of the undoped region of the gate stack.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: January 2, 2007
    Assignee: International Business Machines Corporation
    Inventors: Dale W. Martin, Steven M. Shank, Michael C. Triplett, Deborah A. Tucker
  • Patent number: 6949458
    Abstract: A method and structure for forming a sidewall image transfer conductor having a contact pad includes forming an insulator to include a recess, depositing a conductor around the insulator, and etching the conductor to form the sidewall image transfer conductor, wherein the conductor remains in the recess and forms the contact pad and the recess is perpendicular to the sidewall image transfer conductor.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: September 27, 2005
    Assignee: International Business Machines Corporation
    Inventors: Edward W. Conrad, Chung H. Lam, Dale W. Martin, Edmund Sprogis
  • Patent number: 6610607
    Abstract: A method to define and tailor process limited lithographic features is provided. The method may be used to form sub lithographic spaces between features on a semiconductor wafer. A mask is formed and patterned on the wafer. Spacers are formed on sidewalls of the mask. The pattern of the mask and spacers is then transferred to an underlying layer.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: August 26, 2003
    Assignee: International Business Machines Corporation
    Inventors: Douglas S. Armbrust, Dale W. Martin, Jed H. Rankin, Sylvia Tousley
  • Publication number: 20030115750
    Abstract: A method and structure for forming a sidewall image transfer conductor having a contact pad includes forming an insulator to include a recess, depositing a conductor around the insulator, and etching the conductor to form the sidewall image transfer conductor, wherein the conductor remains in the recess and forms the contact pad and the recess is perpendicular to the sidewall image transfer conductor.
    Type: Application
    Filed: February 10, 2003
    Publication date: June 26, 2003
    Applicant: International Business Machines Corporation
    Inventors: Edward W. Conrad, Chung H. Lam, Dale W. Martin, Edmund Sprogis