Patents by Inventor Damian Fiolka

Damian Fiolka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190094704
    Abstract: A microlithography optical system includes a projection objective and an illumination system that includes a temperature compensated polarization-modulating optical element. The temperature compensated polarization-modulating optical element includes a first polarization-modulating optical element of optically active material, the first polarization-modulating optical element having a first specific rotation with a sign. The temperature compensated polarization-modulating optical element includes also includes a second polarization-modulating optical element of optically active material, the second polarization-modulating optical element having a second specific rotation with a sign opposite to the sign of the first specific rotation.
    Type: Application
    Filed: June 4, 2018
    Publication date: March 28, 2019
    Inventors: Damian Fiolka, Markus Deguenther
  • Patent number: 10151982
    Abstract: The disclosure concerns an illumination system of a microlithographic projection exposure apparatus. The illumination system includes a mirror arrangement which has a plurality of mirror units and at least one element arranged in front of the mirror arrangement in the light propagation direction to produce at least two different states of polarization incident on different mirror units. The mirror units are displaceable independently of each other for altering an angle distribution of the light reflected by the mirror arrangement.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: December 11, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Damian Fiolka, Daniel Walldorf, Ingo Saenger
  • Patent number: 10146135
    Abstract: A microlithography projection exposure apparatus includes illumination optics configured to illuminate object field points of an object field in an object plane, and projection optics configured to image the object field onto an image field in an image plane. The illumination optics includes a multi-mirror array which includes a plurality of mirrors configured to adjust an intensity distribution in exit pupils associated with the object field points. The illumination optics also includes an optical system configured to produce, via an incoherent superposition of illumination rays, a temporal modification of a temporal stabilization of an illumination of the multi-mirror array. The optical system includes a mirror which includes a mirror surface. In addition, the optical system includes an actuator configured to produce a tilt of at least a portion of the mirror surface.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: December 4, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Layh, Markus Deguenther, Michael Patra, Johannes Wangler, Manfred Maul, Damian Fiolka, Gundula Weiss
  • Publication number: 20180314165
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a spatial light modulator which varies an intensity distribution in a pupil surface. The modulator includes an array of mirrors that reflect impinging projection light into directions that depend on control signals applied to the mirrors. A prism, which directs the projection light towards the spatial light modulator, has a double pass surface on which the projection light impinges twice, namely a first time when leaving the prism and before it is reflected by the mirrors, and a second time when entering the prism and after it has been reflected by the mirrors. A pupil perturbation suppressing mechanism is provided that reduces reflections of projection light when it impinges the first time on the double pass surface, and/or prevents that light portions being a result of such reflections contribute to the intensity distribution in the pupil surface.
    Type: Application
    Filed: March 21, 2018
    Publication date: November 1, 2018
    Inventors: Markus Deguenther, Damian Fiolka, Gerhard-Wilhelm Ziegler
  • Publication number: 20180246415
    Abstract: Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
    Type: Application
    Filed: January 24, 2018
    Publication date: August 30, 2018
    Inventors: Stefan Xalter, Yim-Bun Patrick Kwan, Andras G. Major, Manfred Maul, Johannes Eisenmenger, Damian Fiolka, Jan Horn, Markus Deguenther, Florian Bach, Michael Patra, Johannes Wangler, Michael Layh
  • Patent number: 9933706
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a spatial light modulator which varies an intensity distribution in a pupil surface. The modulator includes an array of mirrors that reflect impinging projection light into directions that depend on control signals applied to the mirrors. A prism, which directs the projection light towards the spatial light modulator, has a double pass surface on which the projection light impinges twice, namely a first time when leaving the prism and before it is reflected by the mirrors, and a second time when entering the prism and after it has been reflected by the mirrors. A pupil perturbation suppressing mechanism is provided that reduces reflections of projection light when it impinges the first time on the double pass surface, and/or prevents that light portions being a result of such reflections contribute to the intensity distribution in the pupil surface.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: April 3, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Damian Fiolka, Gerhard-Wilhelm Ziegler
  • Patent number: 9897925
    Abstract: Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: February 20, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Stefan Xalter, Yim-Bun Patrick Kwan, Andras G. Major, Manfred Maul, Johannes Eisenmenger, Damian Fiolka, Jan Horn, Markus Deguenther, Florian Bach, Michael Patra, Johannes Wangler, Michael Layh
  • Publication number: 20170329233
    Abstract: A microlithography optical system includes a projection objective and an illumination system that includes a temperature compensated polarization-modulating optical element. The temperature compensated polarization-modulating optical element includes a first polarization-modulating optical element of optically active material, the first polarization-modulating optical element having a first specific rotation with a sign. The temperature compensated polarization-modulating optical element includes also includes a second polarization-modulating optical element of optically active material, the second polarization-modulating optical element having a second specific rotation with a sign opposite to the sign of the first specific rotation.
    Type: Application
    Filed: August 2, 2017
    Publication date: November 16, 2017
    Inventors: Damian Fiolka, Markus Deguenther
  • Patent number: 9778576
    Abstract: An illumination optical unit for microlithography illuminates an object field with illumination light. The unit includes a first facet mirror that has a plurality of first facets, and a second facet mirror that has a plurality of second facets. The unit has facet pairs which include respectively a facet of the first facet mirror and a facet of the second facet mirror which predefine a plurality of illumination channels for illuminating the object field. At least some of the illumination channels have in each case an assigned polarization element for predefining an individual polarization state of the illumination light guided in the respective illumination channel.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: October 3, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Damian Fiolka, Michael Totzeck, Hartmut Enkisch, Stephan Muellender
  • Publication number: 20170261861
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a spatial light modulator which varies an intensity distribution in a pupil surface. The modulator includes an array of mirrors that reflect impinging projection light into directions that depend on control signals applied to the mirrors. A prism, which directs the projection light towards the spatial light modulator, has a double pass surface on which the projection light impinges twice, namely a first time when leaving the prism and before it is reflected by the mirrors, and a second time when entering the prism and after it has been reflected by the mirrors. A pupil perturbation suppressing mechanism is provided that reduces reflections of projection light when it impinges the first time on the double pass surface, and/or prevents that light portions being a result of such reflections contribute to the intensity distribution in the pupil surface.
    Type: Application
    Filed: September 20, 2016
    Publication date: September 14, 2017
    Inventors: Markus Deguenther, Damian Fiolka, Gerhard-Wilhelm Ziegler
  • Publication number: 20170102622
    Abstract: A microlithography optical system includes a projection objective and an illumination system that includes a temperature compensated polarization-modulating optical element. The temperature compensated polarization-modulating optical element includes a first polarization-modulating optical element of optically active material, the first polarization-modulating optical element having a first specific rotation with a sign. The temperature compensated polarization-modulating optical element includes also includes a second polarization-modulating optical element of optically active material, the second polarization-modulating optical element having a second specific rotation with a sign opposite to the sign of the first specific rotation.
    Type: Application
    Filed: December 19, 2016
    Publication date: April 13, 2017
    Inventors: Damian Fiolka, Markus Deguenther
  • Patent number: 9588435
    Abstract: The disclosure relates to an EUV microlithography projection exposure apparatus having an exposure light source for producing radiation in a first spectral range from 5 nm-15 nm, and a heat light source for producing radiation in a second spectral range from 1-50 ?m. The apparatus also includes an optical system having a first group of mirrors for guiding radiation from the first spectral range along a light path such that each mirror in the first group can have a first associated intensity distribution applied to it in the first spectral range during operation of the exposure light source. The heat light source is arranged such that at least one mirror in the first group can have a second associated intensity distribution in the second spectral range applied to it during operation of the heat light source. The first intensity distribution differs from the second intensity distribution essentially by a position-independent factor.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: March 7, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Damian Fiolka
  • Patent number: 9581911
    Abstract: A microlithography optical system includes a projection objective and an illumination system that includes a temperature compensated polarization-modulating optical element. The temperature compensated polarization-modulating optical element includes a first polarization-modulating optical element of optically active material, the first polarization-modulating optical element having a first specific rotation with a sign. The temperature compensated polarization-modulating optical element includes also includes a second polarization-modulating optical element of optically active material, the second polarization-modulating optical element having a second specific rotation with a sign opposite to the sign of the first specific rotation.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: February 28, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Damian Fiolka, Markus Deguenther
  • Patent number: 9470982
    Abstract: A microlithography optical system includes a projection objective and an illumination system that includes a temperature compensated polarization-modulating optical element. The temperature compensated polarization-modulating optical element includes a first polarization-modulating optical element of optically active material, the first polarization-modulating optical element having a first specific rotation with a sign. The temperature compensated polarization-modulating optical element includes also includes a second polarization-modulating optical element of optically active material, the second polarization-modulating optical element having a second specific rotation with a sign opposite to the sign of the first specific rotation.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: October 18, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Damian Fiolka, Markus Deguenther
  • Patent number: 9454085
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a spatial light modulator which varies an intensity distribution in a pupil surface. The modulator includes an array of mirrors that reflect impinging projection light into directions that depend on control signals applied to the mirrors. A prism, which directs the projection light towards the spatial light modulator, has a double pass surface on which the projection light impinges twice, namely a first time when leaving the prism and before it is reflected by the mirrors, and a second time when entering the prism and after it has been reflected by the mirrors. A pupil perturbation suppressing mechanism is provided that reduces reflections of projection light when it impinges the first time on the double pass surface, and/or prevents that light portions being a result of such reflections contribute to the intensity distribution in the pupil surface.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: September 27, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Damian Fiolka, Gerhard-Wilhelm Ziegler
  • Publication number: 20160266502
    Abstract: Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
    Type: Application
    Filed: December 15, 2015
    Publication date: September 15, 2016
    Inventors: Stefan Xalter, Yim-Bun Patrick Kwan, Andras G. Major, Manfred Maul, Johannes Eisenmenger, Damian Fiolka, Jan Horn, Markus Deguenther, Florian Bach, Michael Patra, Johannes Wangler, Michael Layh
  • Patent number: 9423590
    Abstract: The invention relates to an optical element for a projection exposure apparatus for semiconductor lithography comprising an optically active surface and at least one cooling component for cooling the optical element, wherein the cooling component is connected to at least two separate cooling circuits and embodied in such a way that the optically active surface can be cooled to a greater extent in at least one partial region than in a further partial region. The invention furthermore relates to a projection exposure apparatus comprising an optical element according to the invention.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: August 23, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Joachim Hartjes, Damian Fiolka, Boaz Pnini-Mittler
  • Publication number: 20160195815
    Abstract: The disclosure concerns an illumination system of a microlithographic projection exposure apparatus. The illumination system includes a mirror arrangement which has a plurality of mirror units and at least one element arranged in front of the mirror arrangement in the light propagation direction to produce at least two different states of polarization incident on different mirror units. The mirror units are displaceable independently of each other for altering an angle distribution of the light reflected by the mirror arrangement.
    Type: Application
    Filed: January 28, 2016
    Publication date: July 7, 2016
    Inventors: Damian Fiolka, Daniel Walldorf, Ingo Saenger
  • Publication number: 20160195820
    Abstract: An illumination optical unit for microlithography illuminates an object field with illumination light. The unit includes a first facet mirror that has a plurality of first facets, and a second facet mirror that has a plurality of second facets. The unit has facet pairs which include respectively a facet of the first facet mirror and a facet of the second facet mirror which predefine a plurality of illumination channels for illuminating the object field. At least some of the illumination channels have in each case an assigned polarization element for predefining an individual polarization state of the illumination light guided in the respective illumination channel.
    Type: Application
    Filed: February 18, 2016
    Publication date: July 7, 2016
    Inventors: Damian Fiolka, Michael Totzeck, Hartmut Enkisch, Stephan Muellender
  • Patent number: 9383544
    Abstract: An optical system for semiconductor lithography including a plurality of optical components, as well as related components and methods, are disclosed. The apparatus can include an optical component that can be moved by a distance along a straight line within a time of between 5 ms and 500 ms. The straight line can have a polar and azimuth angle of between 0° and 90°, and a distance between the straight line and an optical axis of the apparatus being less than a cross-sectional dimension of a projection exposure beam bundle of the projection exposure apparatus. The apparatus can also include a guide unit configured to guide the optical component.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: July 5, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Frank Melzer, Yim-Bun Patrick Kwan, Stefan Xalter, Damian Fiolka