Patents by Inventor Damien Pauwels

Damien Pauwels has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240174923
    Abstract: A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
    Type: Application
    Filed: February 6, 2024
    Publication date: May 30, 2024
    Inventors: Samuel BLAHUTA, Eric E. MATTMANN, Damien PAUWELS, Bruno VIANA
  • Patent number: 11926777
    Abstract: A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: March 12, 2024
    Assignee: LUXIUM SOLUTIONS, LLC
    Inventors: Samuel Blahuta, Eric E. Mattmann, Damien Pauwels, Bruno Viana
  • Publication number: 20220290046
    Abstract: A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 15, 2022
    Inventors: Samuel BLAHUTA, Eric E. MATTMANN, Damien PAUWELS, Bruno VIANA
  • Publication number: 20210147748
    Abstract: A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
    Type: Application
    Filed: December 21, 2020
    Publication date: May 20, 2021
    Inventors: Samuel BLAHUTA, Eric E. MATTMANN, Damien PAUWELS, Bruno VIANA
  • Patent number: 10907096
    Abstract: A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: February 2, 2021
    Assignee: SAINT-GOBAIN CRISTAUX & DETECTEURS
    Inventors: Samuel Blahuta, Eric E. Mattmann, Damien Pauwels, Bruno Viana
  • Publication number: 20180094189
    Abstract: A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 5, 2018
    Inventors: Samuel Blahuta, Eric E. Mattmann, Damien Pauwels, Bruno Viana
  • Patent number: 9868900
    Abstract: A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: January 16, 2018
    Inventors: Samuel Blahuta, Eric E. Mattmann, Damien Pauwels, Bruno Viana
  • Publication number: 20160002529
    Abstract: A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
    Type: Application
    Filed: September 16, 2015
    Publication date: January 7, 2016
    Inventors: Samuel Blahuta, Eric E. Mattmann, Damien Pauwels, Bruno Viana, Vladimir Ouspenski
  • Publication number: 20130327986
    Abstract: A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
    Type: Application
    Filed: November 16, 2011
    Publication date: December 12, 2013
    Inventors: Samuel Blahuta, Eric E. Mattmann, Damien Pauwels, Bruno Viana, Vladimir Ouspenski
  • Publication number: 20120119092
    Abstract: The invention relates to a scintillator material comprising a cerium-doped rare-earth silicate, characterized in that its absorbance at a wavelength of 357 nm is less than its absorbance at 280 nm. This material has an afterglow of generally less than 200 ppm after 100 ms relative to the intensity measured during an X-ray irradiation. It is preferably codoped. It may be obtained using an oxidizing anneal. It is particularly suited to integration in an ionizing particle detector that may be used in a medical imaging apparatus.
    Type: Application
    Filed: December 23, 2010
    Publication date: May 17, 2012
    Applicant: SAINT-GOBAIN CRISTAUX ET DETECTEURS
    Inventors: Samuel Blahuta, Eric Mattmann, Damien Pauwels, Bruno Viana
  • Publication number: 20090136731
    Abstract: A scintillator crystal and a method for growing a scintillator crystal are provided which includes an as-grown Edge-defined Film-fed Growth (EFG) single crystal. The as-grown EFG single crystal has a body having a thickness, a width, and a length, such that the thickness?width<length, and the body has a cross-sectional area perpendicular to the length of not less than about 16 mm2.
    Type: Application
    Filed: October 22, 2008
    Publication date: May 28, 2009
    Applicant: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Vitali Tatartchenko, Steven A. Zanella, John W. Locher, Christopher D. Jones, Damien Pauwels
  • Patent number: 6818896
    Abstract: A monoclinic single crystal with a lutetium pyrosilicate structure is described. The crystal is formed by crystallization from a congruent molten composition of LU2(1-x)M2xSi2O7 where LU is lutetium or a lutetium-based alloy which also includes one or more of scandium, ytterbium, indium, lanthanum, and gadolinium; where M is cerium or cerium partially substituted with one or more of the elements of the lanthanide family excluding lutetium; and where x is defined by the limiting level of LU substitution with M in a monoclinic crystal of the lutetium pyrosilicate structure. The LU alloy should contain greater than about 75 weight percent lutetium. The crystals exhibit excellent and reproducible scintillation response to gamma radiation.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: November 16, 2004
    Assignee: Saint-Gobain Cristaux & Detecteurs
    Inventors: Damien Pauwels, Bruno Viana, Andree Kahn-Harari, Pieter Dorenbos, Carel Wilhelm Eduard Van Eijk
  • Publication number: 20030062465
    Abstract: A monoclinic single crystal with a lutetium pyrosilicate structure is described. The crystal is formed by crystallization from a congruent molten composition of LU2(1-x)M2x Si2O7 where LU is lutetium or a lutetium-based alloy which also includes one or more of scandium, ytterbium, indium, lanthanum, and gadolinium; where M is cerium or cerium partially substituted with one or more of the elements of the lanthanide family excluding lutetium; and where x is defined by the limiting level of LU substitution with M in a monoclinic crystal of the lutetium pyrosilicate structure. The LU alloy should contain greater than about 75 weight percent lutetium. The crystals exhibit excellent and reproducible scintillation response to gamma radiation.
    Type: Application
    Filed: July 18, 2002
    Publication date: April 3, 2003
    Applicant: CRISMATEC
    Inventors: Damien Pauwels, Bruno Viana, Andree Kahn-Harari, Pieter Dorenbos, Carel Wilhelm Eduard Van Eijk
  • Patent number: 6437336
    Abstract: A monoclinic single crystal with a lutetium pyrosilicate structure is described. The crystal is formed by crystallization from a congruent molten composition of LU2(1−x)M2x Si2O7 where LU is lutetium or a lutetium-based alloy which also includes one or more of scandium, ytterbium, indium, lanthanum, and gadolinium; where M is cerium or cerium partially substituted with one or more of the elements of the lanthanide family excluding lutetium; and where x is defined by the limiting level of LU substitution with M in a monoclinic crystal of the lutetium pyrosilicate structure. The LU alloy should contain greater than about 75 weight percent lutetium. The crystals exhibit excellent and reproducible scintillation response to gamma radiation.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: August 20, 2002
    Assignee: Crismatec
    Inventors: Damien Pauwels, Bruno Viana, Andree Kahn-Harari, Pieter Dorenbos, Carel Wilhelm Eduard Van Eijk