Patents by Inventor Dan E. Andersen

Dan E. Andersen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8709001
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: April 29, 2014
    Assignee: Optimedica Corporation
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 8690862
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 8, 2014
    Assignee: Optimedica Corporation
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, Dan E. Andersen, David H. Mordaunt
  • Patent number: 8500724
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: August 6, 2013
    Assignee: Optimedica Corporation
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 8425497
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: April 23, 2013
    Assignee: Optimedica Corporation
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 8403921
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: March 26, 2013
    Assignee: Optimedica Corporation
    Inventors: Daniel V. Palankar, Mark S. Blumenkranz, Dan E. Andersen, David H. Mordaunt
  • Patent number: 8394084
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: March 12, 2013
    Assignee: Optimedica Corporation
    Inventors: Daniel V. Palankar, Mark S. Blumenkranz, Dan E. Andersen, David H. Mordaunt
  • Publication number: 20130023864
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: August 17, 2012
    Publication date: January 24, 2013
    Applicant: OptiMedica Corporation
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 8336555
    Abstract: A system and method for treating ophthalmic target tissue, including a light source for generating a beam of light, a beam delivery system that includes a scanner for generating patterns, and a controller for controlling the light source and delivery system to create a dosimetry pattern of the light beam on the ophthalmic target tissue. One or more dosage parameters of the light beam vary within the dosimetry pattern, to create varying exposures on the target tissue. A visualization device observes lesions formed on the ophthalmic target tissue by the dosimetry pattern. The controller selects dosage parameters for the treatment beam based upon the lesions resulting from the dosimetry pattern, either automatically or in response to user input, so that a desired clinical effect is achieved by selecting the character of the lesions as determined by the dosimetry pattern lesions.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: December 25, 2012
    Assignee: Topcon Medical Laser Systems, Inc.
    Inventors: Daniel V. Palanker, Dan E. Andersen
  • Publication number: 20120316545
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: August 16, 2012
    Publication date: December 13, 2012
    Applicant: OptiMedica Corporation
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20120296394
    Abstract: A system and method of treating target tissue in a patient's eye, which includes generating a light beam, deflecting the light beam using a scanner to form first and second treatment patterns, delivering the first treatment pattern to the target tissue to form an incision that provides access to an eye chamber of the patient's eye, and delivering the second treatment pattern to the target tissue to form a relaxation incision along or near limbus tissue or along corneal tissue anterior to the limbus tissue of the patient's eye to reduce astigmatism thereof.
    Type: Application
    Filed: August 7, 2012
    Publication date: November 22, 2012
    Applicant: OPTIMEDICA CORPORATION
    Inventors: William Culbertson, David Angeley, George Marcellino, Dan E. Andersen
  • Publication number: 20110178512
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: March 25, 2011
    Publication date: July 21, 2011
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Publication number: 20110178511
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: March 25, 2011
    Publication date: July 21, 2011
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, David H. Mordaunt, Dan E. Andersen
  • Patent number: 7824396
    Abstract: A method for delivering electromagnetic radiation onto tissue to be ‘treated with the radiation includes delivering the radiation onto the tissue in a treatment-spot having a polygonal shape such as a rectangle or a hexagon. The polygonal shape is selected such that a region of the tissue to be treated’ can be completely covered by a plurality of such shapes essentially without overlapping the shapes. The radiation to be delivered is passed through a lightguide having a cross-section of the polygonal shape. Radiation exiting the lightguide is projected onto the tissue via a plurality of optical elements to provide the treatment-spot.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: November 2, 2010
    Assignee: Lumenis Ltd.
    Inventors: David G. Angeley, Dan E. Andersen, Philip S. James
  • Publication number: 20100191226
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Application
    Filed: July 27, 2009
    Publication date: July 29, 2010
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, Dan E. Andersen
  • Patent number: 7599591
    Abstract: An optical device and method for varying an optical characteristic of an optical beam can include a plurality of optical fibers each having an input end, an output end, and a core, wherein each of the optical fibers has an effective area and a numerical aperture, and a beam-deviating component for moving at least one of the optical fiber input ends and the optical beam relative to each other such that the optical beam selectively enters the input ends one at a time and is transmitted out the output ends one at a time, wherein at least one of the effective areas and the numerical apertures varies among the plurality of optical fibers such that the optical beam transmitted out of the output ends has a varying optical characteristic.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 6, 2009
    Assignee: Optimedica Corporation
    Inventors: Dan E. Andersen, David G. Angeley, Philip Gooding, Michael W. Wiltberger, David H. Mordaunt
  • Publication number: 20090105699
    Abstract: A method for delivering electromagnetic radiation onto tissue to be ‘treated with the radiation includes delivering the radiation onto the tissue in a treatment-spot having a polygonal shape such as a rectangle or a hexagon. The polygonal shape is selected such that a region of the tissue to be treated’ can be completely covered by a plurality of such shapes essentially without overlapping the shapes. The radiation to be delivered is passed through a lightguide having a cross-section of the polygonal shape. Radiation exiting the lightguide is projected onto the tissue via a plurality of optical elements to provide the treatment-spot.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 23, 2009
    Applicant: Lumenis Ltd.
    Inventors: David G. Angeley, Dan E. Andersen, Philip S. James
  • Patent number: 7452080
    Abstract: An apparatus and method for treating and/or diagnosing a patient's eye. A light source produces fixation light and procedure (treatment and/or diagnosis) light. A scanning device deflects the fixation light to produce a fixation pattern of the fixation light on the eye, and deflects the procedure light to produce a procedure pattern of the procedure light on the eye. A controller controls the scanning device such that the fixation and procedure patterns move relative to each other, and/or the fixation pattern dynamically changes.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: November 18, 2008
    Assignee: Optimedica Corporation
    Inventors: Michael W. Wiltberger, Dan E. Andersen
  • Patent number: 7452081
    Abstract: An apparatus and method for treating and/or diagnosing a patient's eye. A light source produces fixation light and procedure light. A scanning device deflects the fixation light to produce a fixation pattern of the fixation light on the eye, and deflects the procedure light to produce a procedure pattern of the procedure light on the eye. A controller controls the scanning device such that the fixation and procedure patterns move relative to each other, and/or the fixation pattern dynamically changes.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: November 18, 2008
    Assignee: Optimedica Corporation
    Inventors: Michael W. Wiltberger, Dan E. Andersen
  • Publication number: 20080281303
    Abstract: A system and method of treating target tissue in a patient's eye, which includes generating a light beam, deflecting the light beam using a scanner to form first and second treatment patterns, delivering the first treatment pattern to the target tissue to form an incision that provides access to an eye chamber of the patient's eye, and delivering the second treatment pattern to the target tissue to form a relaxation incision along or near limbus tissue or along corneal tissue anterior to the limbus tissue of the patient's eye to reduce astigmatism thereof.
    Type: Application
    Filed: March 13, 2008
    Publication date: November 13, 2008
    Inventors: William Culbertson, David Angeley, George Marcellino, Dan E. Andersen
  • Patent number: 7438713
    Abstract: A method for delivering electromagnetic radiation onto tissue to be treated with the radiation includes delivering the radiation onto the tissue in a treatment-spot having a polygonal shape such as a rectangle or a hexagon. The polygonal shape is selected such that a region of the tissue to be treated can be completely covered by a plurality of such shapes essentially without overlapping the shapes. The radiation to be delivered is passed through a lightguide having a cross-section of the polygonal shape. Radiation exiting the lightguide is projected onto the tissue via a plurality of optical elements to provide the treatment-spot.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: October 21, 2008
    Assignee: Lumenis, Inc.
    Inventors: David G. Angeley, Dan E. Andersen, Philip S. James