Patents by Inventor Dan Saylor Kercher

Dan Saylor Kercher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8821736
    Abstract: A method for making a perpendicular magnetic recording disk includes forming a template layer below a Ru or Ru alloy underlayer, with a granular Co alloy recording layer formed on the underlayer. The template layer is formed by depositing a solution of a polymer with a functional end group and nanoparticles, allowing the solution to dry, annealing the polymer layer to thereby form a polymer layer with embedded spaced-apart nanoparticles, and then etching the polymer layer to a depth sufficient to partially expose the nanoparticles so they protrude above the surface of the polymer layer. The protruding nanoparticles serve as controlled nucleation sites for the Ru or Ru alloy atoms. The nanoparticle-to-nanoparticle distances can be controlled during the formation of the template layer. This enables control of the Co alloy grain diameter distribution as well as grain-to-grain distance distribution.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: September 2, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Bruce Alvin Gurney, Dan Saylor Kercher, Alan C Lam, Ricardo Ruiz, Manfred Ernst Schabes, Kentaro Takano, Shi-Ling Chang Wang, Qing Zhu
  • Publication number: 20140231383
    Abstract: A method for making a perpendicular magnetic recording disk includes forming a template layer below a Ru or Ru alloy underlayer, with a granular Co alloy recording layer formed on the underlayer. The template layer is formed by depositing a solution of a polymer with a functional end group and nanoparticles, allowing the solution to dry, annealing the polymer layer to thereby form a polymer layer with embedded spaced-apart nanoparticles, and then etching the polymer layer to a depth sufficient to partially expose the nanoparticles so they protrude above the surface of the polymer layer. The protruding nanoparticles serve as controlled nucleation sites for the Ru or Ru alloy atoms. The nanoparticle-to-nanoparticle distances can be controlled during the formation of the template layer. This enables control of the Co alloy grain diameter distribution as well as grain-to-grain distance distribution.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 21, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Bruce Alvin Gurney, Dan Saylor Kercher, Alan C. Lam, Ricardo Ruiz, Manfred Ernst Schabes, Kentaro Takano, Shi-Ling Chang Wang, Qing Zhu
  • Publication number: 20130319850
    Abstract: A method for making a patterned-media magnetic recording disk using nanoimprint lithography (NIL) enlarges the size of the imprint resist features after the imprint resist has been patterned by NIL. The layer of imprint resist material is deposited on a disk blank, which may have the magnetic layer already deposited on it. The imprint resist layer is patterned by NIL, resulting in a plurality of spaced-apart resist pillars with sloped sidewalls from the top to the base. An overlayer of a material like a fluorocarbon polymer is deposited over the patterned resist layer, including over the sloped resist pillar sidewalls. This enlarges the lateral dimension of the resist pillars. The overlayer is then etched to leave the overlayer on the sloped resist pillar sidewalls while exposing the disk blank in the spaces between the resist pillars.
    Type: Application
    Filed: August 8, 2013
    Publication date: December 5, 2013
    Applicant: HGST Netherlands B.V.
    Inventors: Toshiki Hirano, Dan Saylor Kercher, Jeffrey S. Lille, Kanaiyalal Chaturdas Patel
  • Patent number: 8541116
    Abstract: A patterned perpendicular magnetic recording disk with discrete data islands of recording layer (RL) material includes a substrate, a patterned exchange bridge layer of magnetic material between the substrate and the islands, and an optional exchange-coupling control layer (CCL) between the exchange bridge layer and the islands. The exchange bridge layer has patterned pedestals below the islands. The exchange bridge layer controls exchange interactions between the RLs in adjacent islands to compensate the dipolar fields between islands, and the pedestals concentrate the flux from the write head. The disk may include a soft underlayer (SUL) of soft magnetically permeable material on the substrate and a nonmagnetic exchange break layer (EBL) on the SUL between the SUL and the exchange bridge layer. In a thermally-assisted recording (TAR) disk a heat sink layer may be located below the exchange bridge layer and the SUL may be optional.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: September 24, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Olav Hellwig, Dan Saylor Kercher, Ernesto E. Marinero, Manfred Ernst Schabes, Dieter K. Weller, Gabriel Zeltzer
  • Patent number: 8481245
    Abstract: A pattern clean-up for fabrication of patterned media using a forced assembly of molecules is disclosed. E-beam lithography is initially used to write the initial patterned bit media structures, which have size and positioning errors. Nano-sized protein molecules are then forced to assemble of on top of the bits. The protein molecules have a very uniform size distribution and assemble into a lattice structure above the e-beam patterned areas. The protein molecules reduce the size and position errors in e-beam patterned structures. This process cleans the signal from the e-beam lithography and lowers the noise in the magnetic reading and writing. This process may be used to fabricate patterned bit media directly on hard disk, or to create a nano-imprint master for mass production of patterned bit media disks.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: July 9, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Qing Dai, Dan Saylor Kercher, Huey-Ming Tzeng
  • Patent number: 8338006
    Abstract: A method for planarizing a magnetic recording disk that has surface features of elevated lands and recessed grooves includes forming two coatings of cured perfluorinated polyether (PFPE) polymers over the surface features. The disk may have a protective carbon overcoat with a surface that replicates the topography of lands and grooves. A liquid functionalized-PFPE is applied over the disk surface and then cured to form a first coating with the functionalized end groups bonding to the carbon overcoat. A liquid non-functionalized-PFPE polymer is then applied over the functionalized-PFPE coating and cured to form a second coating. The combined coatings substantially planarize the disk surface so that there is minimal recession between the top of the coating over the lands and the top of the coating over the grooves.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: December 25, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Qing Dai, Xing-Cai Guo, Dan Saylor Kercher, Mike Suk
  • Publication number: 20120138567
    Abstract: A method for making a patterned-media magnetic recording disk using nanoimprint lithography (NIL) enlarges the size of the imprint resist features after the imprint resist has been patterned by NIL. The layer of imprint resist material is deposited on a disk blank, which may have the magnetic layer already deposited on it. The imprint resist layer is patterned by NIL, resulting in a plurality of spaced-apart resist pillars with sloped sidewalls from the top to the base. An overlayer of a material like a fluorocarbon polymer is deposited over the patterned resist layer, including over the sloped resist pillar sidewalls. This enlarges the lateral dimension of the resist pillars. The overlayer is then etched to leave the overlayer on the sloped resist pillar sidewalls while exposing the disk blank in the spaces between the resist pillars.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 7, 2012
    Inventors: Toshiki Hirano, Dan Saylor Kercher, Jeffrey S. Lille, Kanaiyalal Chaturdas Patel
  • Publication number: 20120092790
    Abstract: A patterned perpendicular magnetic recording disk with discrete data islands of recording layer (RL) material includes a substrate, a patterned exchange bridge layer of magnetic material between the substrate and the islands, and an optional exchange-coupling control layer (CCL) between the exchange bridge layer and the islands. The exchange bridge layer has patterned pedestals below the islands. The exchange bridge layer controls exchange interactions between the RLs in adjacent islands to compensate the dipolar fields between islands, and the pedestals concentrate the flux from the write head. The disk may include a soft underlayer (SUL) of soft magnetically permeable material on the substrate and a nonmagnetic exchange break layer (EBL) on the SUL between the SUL and the exchange bridge layer. In a thermally-assisted recording (TAR) disk a heat sink layer may be located below the exchange bridge layer and the SUL may be optional.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 19, 2012
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Olav Hellwig, Dan Saylor Kercher, Ernesto E. Marinero, Manfred Ernst Schabes, Dieter K. Weller, Gabriel Zeltzer
  • Publication number: 20120091096
    Abstract: A pattern clean-up for fabrication of patterned media using a forced assembly of molecules is disclosed. E-beam lithography is initially used to write the initial patterned bit media structures, which have size and positioning errors. Nano-sized protein molecules are then forced to assemble of on top of the bits. The protein molecules have a very uniform size distribution and assemble into a lattice structure above the e-beam patterned areas. The protein molecules reduce the size and position errors in e-beam patterned structures. This process cleans the signal from the e-beam lithography and lowers the noise in the magnetic reading and writing. This process may be used to fabricate patterned bit media directly on hard disk, or to create a nano-imprint master for mass production of patterned bit media disks.
    Type: Application
    Filed: December 21, 2011
    Publication date: April 19, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Qing Dai, Dan Saylor Kercher, Huey-Ming Tzeng
  • Patent number: 8105753
    Abstract: A pattern clean-up for fabrication of patterned media using a forced assembly of molecules is disclosed. E-beam lithography is initially used to write the initial patterned bit media structures, which have size and positioning errors. Nano-sized protein molecules are then forced to assemble of on top of the bits. The protein molecules have a very uniform size distribution and assemble into a lattice structure above the e-beam patterned areas. The protein molecules reduce the size and position errors in e-beam patterned structures. This process cleans the signal from the e-beam lithography and lowers the noise in the magnetic reading and writing. This process may be used to fabricate patterned bit media directly on hard disk, or to create a nano-imprint master for mass production of patterned bit media disks.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: January 31, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Qing Dai, Dan Saylor Kercher, Huey-Ming Tzeng
  • Publication number: 20100034966
    Abstract: A method for planarizing media disk surfaces with a polymer solution is disclosed. A non-functionalized lubricant is used to coat the disk surfaces without dewetting issues. The polymer is applied via soaking in a diluted solution for several minutes. The interaction of the polymer with the disk surface leads to preferential adsorption of lubricant into the valleys of the topography on the disk surface.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 11, 2010
    Applicant: Hitachi Global Storage Technologies Netherlands BV
    Inventors: QING DAI, XING-CAI GUO, DAN SAYLOR KERCHER, BRUNO MARCHON, MIKE SUK
  • Publication number: 20090305081
    Abstract: A method for planarizing a magnetic recording disk that has surface features of elevated lands and recessed grooves includes forming two coatings of cured perfluorinated polyether (PFPE) polymers over the surface features. The disk may have a protective carbon overcoat with a surface that replicates the topography of lands and grooves. A liquid functionalized-PFPE is applied over the disk surface and then cured to form a first coating with the functionalized end groups bonding to the carbon overcoat. A liquid non-functionalized-PFPE polymer is then applied over the functionalized-PFPE coating and cured to form a second coating. The combined coatings substantially planarize the disk surface so that there is minimal recession between the top of the coating over the lands and the top of the coating over the grooves.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 10, 2009
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Qing Dai, Xing-Cai Guo, Dan Saylor Kercher, Mike Suk
  • Publication number: 20090136873
    Abstract: A pattern clean-up for fabrication of patterned media using a forced assembly of molecules is disclosed. E-beam lithography is initially used to write the initial patterned bit media structures, which have size and positioning errors. Nano-sized protein molecules are then forced to assemble of on top of the bits. The protein molecules have a very uniform size distribution and assemble into a lattice structure above the e-beam patterned areas. The protein molecules reduce the size and position errors in e-beam patterned structures. This process cleans the signal from the e-beam lithography and lowers the noise in the magnetic reading and writing. This process may be used to fabricate patterned bit media directly on hard disk, or to create a nano-imprint master for mass production of patterned bit media disks.
    Type: Application
    Filed: November 28, 2007
    Publication date: May 28, 2009
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS BV
    Inventors: Qing Dai, Dan Saylor Kercher, Huey-Ming Tzeng
  • Patent number: 7517463
    Abstract: A perpendicular write pole having dual gap layers is disclosed. An outer gap layer, resistant to etching and corrosion in alkaline solutions protects the inner gap layer during photo resist development. An inner gap layer, resistant to acid etch conditions, protects the magnetic pole materials during removal of portions of the outer gap layer prior to electroplating of the pole to form the flare point.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: April 14, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Christian Rene Bonhote, Dan Saylor Kercher, Jeffrey S. Lille