Patents by Inventor Dan Wack

Dan Wack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11333487
    Abstract: Reference and test waves are directed in a common path mode in a fiber tip diffraction interferometer. A first fiber can be used to generate the reference wave and a second fiber can be used to generate the test wave. Each fiber can include a single mode fiber tip that defines a wedge at an end without a coating on end surface or a tapered fiber tip. The fiber tip diffraction interferometer can include an aplanatic pupil imaging lens or system disposed to receive both the test wave and the reference wave and a sensor configured to receive both the test wave and the reference wave.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: May 17, 2022
    Assignee: KLA CORPORATION
    Inventors: Haifeng Huang, Rui-Fang Shi, Dan Wack, Robert Kestner
  • Publication number: 20210123716
    Abstract: Reference and test waves are directed in a common path mode in a fiber tip diffraction interferometer. A first fiber can be used to generate the reference wave and a second fiber can be used to generate the test wave. Each fiber can include a single mode fiber tip that defines a wedge at an end without a coating on end surface or a tapered fiber tip. The fiber tip diffraction interferometer can include an aplanatic pupil imaging lens or system disposed to receive both the test wave and the reference wave and a sensor configured to receive both the test wave and the reference wave.
    Type: Application
    Filed: March 13, 2020
    Publication date: April 29, 2021
    Inventors: Haifeng Huang, Rui-Fang Shi, Dan Wack, Robert Kestner
  • Patent number: 9702693
    Abstract: A metrology system for determining overlay is disclosed. The system includes an optical assembly for capturing images of an overlay mark and a computer for analyzing the captured images to determine whether there is an overlay error. The mark comprises first and second regions that each include at least two separately generated working zones, juxtaposed relative to one another, configured to provide overlay information in a first direction, and include a periodic structure having coarsely segmented elements. The mark comprises third and fourth regions that each include at least two separately generated working zones, juxtaposed relative to one another, configured to provide overlay information in a second direction, and include a periodic structure having coarsely segmented elements.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: July 11, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Mark Ghinovker, Michael Adel, Walter D. Mieher, Ady Levy, Dan Wack
  • Publication number: 20160313116
    Abstract: A metrology system for determining overlay is disclosed. The system includes an optical assembly for capturing images of an overlay mark and a computer for analyzing the captured images to determine whether there is an overlay error. The mark comprises first and second regions that each include at least two separately generated working zones, juxtaposed relative to one another, configured to provide overlay information in a first direction, and include a periodic structure having coarsely segmented elements. The mark comprises third and fourth regions that each include at least two separately generated working zones, juxtaposed relative to one another, configured to provide overlay information in a second direction, and include a periodic structure having coarsely segmented elements.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 27, 2016
    Applicant: KLA-Tencor Corporation
    Inventors: Mark Ghinovker, Michael Adel, Walter D. Mieher, Ady Levy, Dan Wack
  • Publication number: 20130314710
    Abstract: Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including: but not limited to, critical dimension and overlay misregistration; defects and thin film characteristics; critical dimension and defects; critical dimension and thin film characteristics; critical dimension, thin film characteristics and defects; macro defects and micro defects; flatness, thin film characteristics and defects; overlay misregistration and flatness; an implant characteristic and defects; and adhesion and thickness.
    Type: Application
    Filed: August 5, 2013
    Publication date: November 28, 2013
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Ady Levy, Kyle A. Brown, Rodney Smedt, Gary Bultman, Mehrdad Nikoonahad, Dan Wack, John Fielden, Ibrahim Abdul-Halim
  • Patent number: 8502979
    Abstract: Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including: but not limited to, critical dimension and overlay misregistration; defects and thin film characteristics; critical dimension and defects; critical dimension and thin film characteristics; critical dimension, thin film characteristics and defects; macro defects and micro defects; flatness, thin film characteristics and defects; overlay misregistration and flatness; an implant characteristic and defects; and adhesion and thickness.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: August 6, 2013
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Ady Levy, Kyle A. Brown, Rodney Smedt, Gary Bultman, Mehrdad Nikoonahad, Dan Wack, John Fielden, Ibrahim Abdul-Halim
  • Publication number: 20130039460
    Abstract: Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including: but not limited to, critical dimension and overlay misregistration; defects and thin film characteristics; critical dimension and defects; critical dimension and thin film characteristics; critical dimension, thin film characteristics and defects; macro defects and micro defects; flatness, thin film characteristics and defects; overlay misregistration and flatness; an implant characteristic and defects; and adhesion and thickness.
    Type: Application
    Filed: May 9, 2012
    Publication date: February 14, 2013
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Ady Levy, Kyle A. Brown, Rodney Smedt, Gary Bultman, Mehrdad Nikoonahad, Dan Wack, John Fielden, Ibrahim Abdul-Halim
  • Patent number: 8330281
    Abstract: An overlay mark for determining the relative shift between two or more successive layers of a substrate is disclosed. The overlay mark includes at least one test pattern for determining the relative shift between a first and a second layer of the substrate in a first direction. The test pattern includes a first set of working zones and a second set of working zones. The first set of working zones are disposed on a first layer of the substrate and have at least two working zones diagonally opposed and spatially offset relative to one another. The second set of working zones are disposed on a second layer of the substrate and have at least two working zones diagonally opposed and spatially offset relative to one another. The first set of working zones are generally angled relative to the second set of working zones thus forming an “X” shaped test pattern.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: December 11, 2012
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Mark Ghinovker, Michael Adel, Walter Dean Mieher, Ady Levy, Dan Wack
  • Publication number: 20120281275
    Abstract: Systems and methods for determining one or more characteristics of a specimen using radiation in the terahertz range are provided. One system includes an illumination subsystem configured to illuminate the specimen with radiation. The system also includes a detection subsystem configured to detect radiation propagating from the specimen in response to illumination of the specimen and to generate output responsive to the detected radiation. The detected radiation includes radiation in the terahertz range. In addition, the system includes a processor configured to determine the one or more characteristics of the specimen using the output.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Ady Levy, Samuel Ngai, Christopher F. Bevis, Stefano Concina, John Fielden, Walter Mieher, Dieter Mueller, Neil Richardson, Dan Wack, Larry Wagner
  • Patent number: 8179530
    Abstract: Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including: but not limited to, critical dimension and overlay misregistration; defects and thin film characteristics; critical dimension and defects; critical dimension and thin film characteristics; critical dimension, thin film characteristics and defects; macro defects and micro defects; flatness, thin film characteristics and defects; overlay misregistration and flatness; an implant characteristic and defects; and adhesion and thickness.
    Type: Grant
    Filed: July 5, 2010
    Date of Patent: May 15, 2012
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Ady Levy, Kyle A. Brown, Rodney Smedt, Gary Bultman, Mehrdad Nikoonahad, Dan Wack, John Fielden, Ibrahim Abdul-Halim
  • Patent number: 7933016
    Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. A plurality of targets is provided. Each target includes a portion of the first and second structures and each is designed to have an offset between its first and second structure portions. The targets are illuminated with electromagnetic radiation to thereby obtain spectra from each target at a ?1st diffraction order and a +1st diffraction order.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 26, 2011
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Walter D. Mieher, Ady Levy, Boris Golovanevsky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher F. Bevis, John Fielden, Noah Bareket, Kenneth P. Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus G. Dziura, Mark Ghinovker
  • Patent number: 7879627
    Abstract: An overlay mark for determining the relative shift between two or more successive layers of a substrate and methods for using such overlay mark are disclosed. In one embodiment, the overlay mark includes at least one test pattern for determining the relative shift between a first and a second layer of the substrate in a first direction. The test pattern includes a first set of working zones and a second set of working zones. The first set of working zones are disposed on a first layer of the substrate and have at least two working zones diagonally opposed and spatially offset relative to one another. The second set of working zones are disposed on a second layer of the substrate and have at least two working zones diagonally opposed and spatially offset relative to one another. The first set of working zones are generally angled relative to the second set of working zones thus forming an “X” shaped test pattern.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: February 1, 2011
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Mark Ghinovker, Michael Adel, Walter D. Mieher, Ady Levy, Dan Wack
  • Publication number: 20100279213
    Abstract: Methods and systems for controlling variation in dimensions of patterned features across a wafer are provided. One method includes measuring a characteristic of a latent image formed in a resist at more than one location across a wafer during a lithography process. The method also includes altering a parameter of the lithography process in response to the characteristic to reduce variation in dimensions of patterned features formed across the wafer by the lithography process. Altering the parameter compensates for non-time varying spatial variation in a temperature to which the wafer is exposed during a post exposure bake step of the lithography process and an additional variation in the post exposure bake step.
    Type: Application
    Filed: May 12, 2010
    Publication date: November 4, 2010
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Ady Levy, Michael Hanna, Dan Wack, John Fielden, Christopher F. Bevis, Larry Wagner
  • Publication number: 20100271621
    Abstract: Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including: but not limited to, critical dimension and overlay misregistration; defects and thin film characteristics; critical dimension and defects; critical dimension and thin film characteristics; critical dimension, thin film characteristics and defects; macro defects and micro defects; flatness, thin film characteristics and defects; overlay misregistration and flatness; an implant characteristic and defects; and adhesion and thickness.
    Type: Application
    Filed: July 5, 2010
    Publication date: October 28, 2010
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Ady Levy, Kyle A. Brown, Rodney Smedt, Gary Bultman, Mehrdad Nikoonahad, Dan Wack, John Fielden, Ibrahim Abdul-Halim
  • Publication number: 20100235114
    Abstract: Systems and methods for determining one or more characteristics of a specimen using radiation in the terahertz range are provided. One system includes an illumination subsystem configured to illuminate the specimen with radiation. The system also includes a detection subsystem configured to detect radiation propagating from the specimen in response to illumination of the specimen and to generate output responsive to the detected radiation. The detected radiation includes radiation in the terahertz range. In addition, the system includes a processor configured to determine the one or more characteristics of the specimen using the output.
    Type: Application
    Filed: March 10, 2009
    Publication date: September 16, 2010
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Ady Levy, Samuel Ngai, Christopher F. Bevis, Stefano Concina, John Fielden, Walter Mieher, Dieter Mueller, Neil Richardson, Dan Wack, Larry Wagner
  • Patent number: 7751046
    Abstract: Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including, but not limited to, critical dimension and overlay misregistration. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: July 6, 2010
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Ady Levy, Kyle A. Brown, Rodney Smedt, Gary Bultman, Mehrdad Nikoonahad, Dan Wack, John Fielden, Ibrahim Abdulhalim
  • Publication number: 20100091284
    Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. A plurality of targets is provided. Each target includes a portion of the first and second structures and each is designed to have an offset between its first and second structure portions. The targets are illuminated with electromagnetic radiation to thereby obtain spectra from each target at a ?1st diffraction order and a +1st diffraction order.
    Type: Application
    Filed: December 18, 2009
    Publication date: April 15, 2010
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Walter D. Mieher, Ady Levy, Boris Golovanevsky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher F. Bevis, John Fielden, Noah Bareket, Kenneth P. Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus G. Dziura, Mark Ghinovker
  • Patent number: 7663753
    Abstract: Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. Target A is designed to have an offset Xa between its first and second structures portions; target B is designed to have an offset Xb; target C is designed to have an offset Xc; and target D is designed to have an offset Xd. Each of the offsets Xa, Xb, Xc and Xd is preferably different from zero; Xa is an opposite sign and differ from Xb; and Xc is an opposite sign and differs from Xd. The targets A, B, C and D are illuminated with electromagnetic radiation to obtain spectra SA, SB, SC, and SD from targets A, B, C, and D, respectively. Any overlay error between the first structures and the second structures is then determined using a linear approximation based on the obtained spectra SA, SB, SC, and SD.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 16, 2010
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Walter D. Mieher, Ady Levy, Boris Golovanevsky, Michael Friedmann, Ian Smith, Michael Adel, Anatoly Fabrikant, Christopher F. Bevis, John Fielden, Noah Bareket, Ken Gross, Piotr Zalicki, Dan Wack, Paola Dececco, Thaddeus G. Dziura, Mark Ghinovker
  • Publication number: 20090291513
    Abstract: An overlay mark for determining the relative shift between two or more successive layers of a substrate and methods for using such overlay mark are disclosed. In one embodiment, the overlay mark includes at least one test pattern for determining the relative shift between a first and a second layer of the substrate in a first direction. The test pattern includes a first set of working zones and a second set of working zones. The first set of working zones are disposed on a first layer of the substrate and have at least two working zones diagonally opposed and spatially offset relative to one another. The second set of working zones are disposed on a second layer of the substrate and have at least two working zones diagonally opposed and spatially offset relative to one another. The first set of working zones are generally angled relative to the second set of working zones thus forming an “X” shaped test pattern.
    Type: Application
    Filed: July 31, 2009
    Publication date: November 26, 2009
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Mark Ghinovker, Michael Adel, Walter Dean Mieher, Ady Levy, Dan Wack
  • Patent number: 7463369
    Abstract: Systems and methods for measuring one or more characteristics of patterned features on a specimen are provided. One system includes an optical subsystem configured to acquire measurements of light scattered from the patterned features on the specimen at multiple angles of incidence, multiple azimuthal angles, and multiple wavelengths simultaneously. The system also includes a processor configured to determine the one or more characteristics of the patterned features from the measurements. One method includes acquiring measurements of light scattered from the patterned features on the specimen at multiple angles of incidence, multiple azimuthal angles, and multiple wavelengths simultaneously. The method also includes determining the one or more characteristics of the patterned features from the measurements.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: December 9, 2008
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Dan Wack, Haiming Wang, Kenneth P. Gross