Patents by Inventor Danian Zheng

Danian Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130251
    Abstract: A three-dimensional reservoir based on three-dimensional volatile memristors and a method for manufacturing the same. In the three-dimensional reservoir, a memory layer, a select layer, and an electrode layer in each via form a memristor which is a reservoir unit. The three-dimensional reservoir is formed based on a stacking structure and multiple vias. The three-dimensional reservoir is constructed by using virtual nodes generated from dynamic characteristics of the three-dimensional memristors. An interfacial memristor is first constructed, and its volatility is verified through electric tests. A vertical three-dimensional array is manufactured based on the volatile memristor. A dynamic characteristic of the memristor is adjusted through a Schottky barrier. Different layers in the three-dimensional reservoir correspond to different reservoirs, which are constructed by controlling memristors in the different layers, respectively.
    Type: Application
    Filed: March 10, 2022
    Publication date: April 18, 2024
    Inventors: Xiaoxin XU, Wenxuan SUN, Jie YU, Woyu ZHANG, Danian DONG, Jinru LAI, Xu ZHENG, Dashan SHANG
  • Publication number: 20230272775
    Abstract: Systems and methods of autonomous farm-level control and optimization of wind turbines are provided. Exemplary embodiments comprise a site controller running on a site server. The site controller collects and analyzes yaw control data of a plurality of wind turbines and wind direction data relating to the plurality of wind turbines. The site server determines collective wind direction across an area occupied by the plurality of wind turbines and sends yaw control signals including desired nacelle yaw position instructions to the plurality of wind turbines. The site controller performs wake modeling analysis and determines desired nacelle positions of one or more of the plurality of wind turbines. The desired nacelle yaw position instructions systematically correct static yaw misalignment for all of the plurality of wind turbines. Embodiments of the disclosure provide means to perform whole site or partial site level controls of the yaw controllers of a utility scale wind turbine farm.
    Type: Application
    Filed: May 1, 2023
    Publication date: August 31, 2023
    Inventors: Nathan L. Post, Danian Zheng, Peter Bachant, Mohit Dua
  • Patent number: 11639710
    Abstract: Systems and methods of autonomous farm-level control and optimization of wind turbines are provided. Exemplary embodiments comprise a site controller running on a site server. The site controller collects and analyzes yaw control data of a plurality of wind turbines and wind direction data relating to the plurality of wind turbines. The site server determines collective wind direction across an area occupied by the plurality of wind turbines and sends yaw control signals including desired nacelle yaw position instructions to the plurality of wind turbines. The site controller performs wake modeling analysis and determines desired nacelle positions of one or more of the plurality of wind turbines. The desired nacelle yaw position instructions systematically correct static yaw misalignment for all of the plurality of wind turbines. Embodiments of the disclosure provide means to perform whole site or partial site level controls of the yaw controllers of a utility scale wind turbine farm.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: May 2, 2023
    Assignee: WindESCo, Inc.
    Inventors: Nathan L. Post, Danian Zheng, Peter Bachant, Mohit Dua
  • Publication number: 20220412313
    Abstract: Systems and methods of autonomous farm-level control and optimization of wind turbines are provided. Exemplary embodiments comprise a site controller running on a site server. The site controller collects and analyzes yaw control data of a plurality of wind turbines and wind direction data relating to the plurality of wind turbines. The site server determines collective wind direction across an area occupied by the plurality of wind turbines and sends yaw control signals including desired nacelle yaw position instructions to the plurality of wind turbines. The site controller performs wake modeling analysis and determines desired nacelle positions of one or more of the plurality of wind turbines. The desired nacelle yaw position instructions systematically correct static yaw misalignment for all of the plurality of wind turbines. Embodiments of the disclosure provide means to perform whole site or partial site level controls of the yaw controllers of a utility scale wind turbine farm.
    Type: Application
    Filed: June 23, 2022
    Publication date: December 29, 2022
    Inventors: Nathan L. Post, Danian Zheng, Peter Bachant, Mohit Dua
  • Patent number: 11319926
    Abstract: A method for protecting a wind turbine from extreme and fatigue loads associated with high wind speed events includes receiving, via a wind turbine condition estimator programmed in a turbine controller of the wind turbine, operating data indicative of current wind turbine operation. Further, the method includes determining, via the wind turbine condition estimator, a plurality of estimated wind turbine conditions at the wind turbine by solving a control algorithm having one or more equations using the operating data. The estimated wind turbine conditions include, at least, an estimated wind speed at the wind turbine and a loading proxy of the wind turbine. As such, the method includes implementing, via the turbine controller, a corrective action only when each of the estimated wind turbine conditions indicates that one or more loading conditions of the wind turbine exceeds a predetermined limit.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: May 3, 2022
    Assignee: General Electric Company
    Inventors: Peter Alan Gregg, Danian Zheng
  • Patent number: 11073133
    Abstract: A method for controlling the operation of a wind turbine may generally include monitoring a current yaw position of a nacelle of the wind turbine, wherein the current yaw position is located within one of a plurality of yaw sectors defined for the nacelle. In addition, the method may include monitoring a wind-dependent parameter of the wind turbine and determining a variance of the wind-dependent parameter over time, wherein the variance is indicative of variations in a wind parameter associated with the wind turbine. Moreover, the method may include determining at least one curtailed operating setpoint for the wind turbine when the variance exceeds a predetermined variance threshold, wherein the curtailed operating setpoint(s) is determined based at least in part on historical wind data for the yaw sector associated with the current yaw position.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: July 27, 2021
    Assignee: General Electric Company
    Inventors: Danian Zheng, Shuang Gu, Veronica Hernandez-Ortiz, Xiongzhe Huang, David Forrest Loy, Ramy Michael Souri
  • Patent number: 10815972
    Abstract: A method for assessing or validating wind turbine or wind farm performance produced by one or more upgrades is provided. Measurements of operating data from wind turbines in a wind farm are obtained. Baseline models of performance are generated, and each of the baseline models is developed from a different portion of the operating data. A generating step filters the wind turbines so that they are in a balanced randomized state. An optimal baseline model of performance is selected from the baseline models and the optimal baseline model includes direction. The optimal baseline model of performance and an actual performance of the wind farm or wind turbine is compared. The comparing step determines a difference between an optimal baseline model of power output and an actual power output of the wind farm/turbine. The difference is reflective of a change in the power output produced by the upgrades.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: October 27, 2020
    Assignee: General Electric Company
    Inventors: Scott Charles Evans, Danian Zheng, Raul Munoz, Samuel Bryan Shartzer, Brian Allen Rittenhouse, Samuel Davoust, Alvaro Enrique Gil, Nurali Virani, Ricardo Zetina
  • Publication number: 20200300227
    Abstract: A method for assessing or validating wind turbine or wind farm performance produced by one or more upgrades is provided. Measurements of operating data from wind turbines in a wind farm are obtained. Baseline models of performance are generated, and each of the baseline models is developed from a different portion of the operating data. A generating step filters the wind turbines so that they are in a balanced randomized state. An optimal baseline model of performance is selected from the baseline models and the optimal baseline model includes direction. The optimal baseline model of performance and an actual performance of the wind farm or wind turbine is compared. The comparing step determines a difference between an optimal baseline model of power output and an actual power output of the wind farm/turbine. The difference is reflective of a change in the power output produced by the upgrades.
    Type: Application
    Filed: March 22, 2019
    Publication date: September 24, 2020
    Applicant: General Electric Company
    Inventors: Scott Charles Evans, Danian Zheng, Raul Munoz, Samuel Bryan Shartzer, Brian Allen Rittenhouse, Samuel Davoust, Alvaro Enrique Gil, Nurali Virani, Ricardo Zetina
  • Patent number: 10697439
    Abstract: A method for evaluating performance of a wind turbine includes operating the wind turbine in a first operational mode. The method also includes generating a first set of operational data relating to the first operational mode. More specifically, the first set of operational data includes, at least, a first parameter and a second parameter. Further, the first and second parameters of the first set are measured during different time periods during the first operational mode. The method further includes changing the first operational mode to a second operational mode. Moreover, the method includes generating a second set of operational data relating to the second operational mode. The second set of operational data also includes, at least, a first parameter and a second parameter. Thus, the method includes determining a performance characteristic of the first and second operational modes based on the first and second sets of operational data.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: June 30, 2020
    Assignee: General Electric Company
    Inventors: Frederick Wilson Wheeler, Danian Zheng, James Huu Phan, Brian Allen Rittenhouse
  • Publication number: 20200124024
    Abstract: A method for protecting a wind turbine from extreme and fatigue loads associated with high wind speed events includes receiving, via a wind turbine condition estimator programmed in a turbine controller of the wind turbine, operating data indicative of current wind turbine operation. Further, the method includes determining, via the wind turbine condition estimator, a plurality of estimated wind turbine conditions at the wind turbine by solving a control algorithm having one or more equations using the operating data. The estimated wind turbine conditions include, at least, an estimated wind speed at the wind turbine and a loading proxy of the wind turbine. As such, the method includes implementing, via the turbine controller, a corrective action only when each of the estimated wind turbine conditions indicates that one or more loading conditions of the wind turbine exceeds a predetermined limit.
    Type: Application
    Filed: October 22, 2018
    Publication date: April 23, 2020
    Inventors: Peter Alan Gregg, Danian Zheng
  • Publication number: 20180363632
    Abstract: A method for evaluating performance of a wind turbine includes operating the wind turbine in a first operational mode. The method also includes generating a first set of operational data relating to the first operational mode. More specifically, the first set of operational data includes, at least, a first parameter and a second parameter. Further, the first and second parameters of the first set are measured during different time periods during the first operational mode. The method further includes changing the first operational mode to a second operational mode. Moreover, the method includes generating a second set of operational data relating to the second operational mode. The second set of operational data also includes, at least, a first parameter and a second parameter. Thus, the method includes determining a performance characteristic of the first and second operational modes based on the first and second sets of operational data.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Frederick Wilson Wheeler, Danian Zheng, James Huu Phan, Brian Allen Rittenhouse
  • Patent number: 10107261
    Abstract: A system and method for reducing oscillation loads of a wind turbine induced by high turbulence and/or combined with other environmental conditions are provided. The method includes determining at least one wind parameter at the wind turbine; monitoring an operating condition of the wind turbine; determining, by a processor, a variance of at least one of the monitored operating condition or a plurality of the wind parameters, wherein the variance is indicative of an oscillation occurring at one or more wind turbine components; determining, by a processor, an operating set point based on the variance; and, operating the wind turbine based on the operating set point when the variance indicates that the oscillation has a frequency within a certain frequency band so as to modify the frequency, wherein the modified frequency is outside of the frequency band and reduces oscillation loads occurring at the one or more wind turbine components.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: October 23, 2018
    Assignee: General Electric Company
    Inventors: Danian Zheng, Xiongzhe Huang, William Edwin Holley, Conner B. Shane, Raveendra Penmatsa, Jignesh Govindlal Gandhi, Timothy Botsford Cribbs
  • Publication number: 20180283352
    Abstract: The present disclosure is directed to a method for preventing a tower strike of a tower of a wind turbine by a rotor blade thereof. The method includes mounting a plurality of sensors circumferentially around the tower at a height generally aligning with a blade tip of the rotor blade in a rotor plane as the blade tip passes through a six o'clock position. Further, the method includes generating, via one or more of the plurality of sensors, at least one distance signal representative of a distance between the blade tip of the rotor blade and the tower as the rotor blade passes by one or more of the sensors. Thus, the method also includes implementing, via a wind turbine controller, a corrective action if the distance signal exceeds a predetermined threshold.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Inventors: Bryan Paul Williams, Mark L. Cook, Danian Zheng
  • Publication number: 20170321654
    Abstract: A method for controlling the operation of a wind turbine may generally include monitoring a current yaw position of a nacelle of the wind turbine, wherein the current yaw position is located within one of a plurality of yaw sectors defined for the nacelle. In addition, the method may include monitoring a wind-dependent parameter of the wind turbine and determining a variance of the wind-dependent parameter over time, wherein the variance is indicative of variations in a wind parameter associated with the wind turbine. Moreover, the method may include determining at least one curtailed operating setpoint for the wind turbine when the variance exceeds a predetermined variance threshold, wherein the curtailed operating setpoint(s) is determined based at least in part on historical wind data for the yaw sector associated with the current yaw position.
    Type: Application
    Filed: October 31, 2014
    Publication date: November 9, 2017
    Inventors: Danian ZHENG, Shuang GU, Veronica HERNANDEZ-ORTIZ, Xiongzhe HUANG, David Forrest LOY, Ramy Michael SOURI
  • Patent number: 9782710
    Abstract: A wind turbine tower includes a door access opening in a down tower area of the tower. A hinged door panel covers the door access opening, with a ventilation opening defined through the door panel. A multi-sided intake structure, such as a box-like structure, is connected to an exterior of the door panel over the first ventilation opening. The intake structure extends transversely from the door panel and includes a top side, a bottom side, and at least two vertical sides extending between the top side and the bottom side. The vertical sides are open to air flow therethrough. The top and bottom sides may also be open to air flow therethrough. Air from multiple directions is drawn into an interior of the wind turbine tower through the intake structure and ventilation opening. A filtering system with first and second stage filters may be incorporated with any of the intake structures.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: October 10, 2017
    Assignee: General Electric Company
    Inventors: Pritesh Jain, Vijendra Singh Chauhan, Darren John Danielsen, Roman Kolar, Danian Zheng, Jay F. Leonard, Brian Keith Andreson, Adam Lord
  • Patent number: 9726147
    Abstract: A method for stopping the operation of a wind turbine is disclosed. The method may generally include receiving signals associated with at least one operating condition of the wind turbine, analyzing the at least one operating condition with a controller of the wind turbine, implementing a first stopping procedure in order to stop operation of the wind turbine when analysis of the at least one operating condition indicates that a pitch system failure has occurred and implementing a second stopping procedure in order to stop operation of the wind turbine when analysis of the at least one operating condition indicates that a different wind turbine stop event has occurred.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: August 8, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Xiongzhe Huang, Danian Zheng
  • Patent number: 9638171
    Abstract: A method of operating a wind turbine is provided. The wind turbine includes a rotor that is rotatably coupled to a generator that is positioned within a nacelle. The rotor includes one or more rotor blades that are coupled to a hub. The method includes transmitting, from a first sensor to a control system, at least a first monitoring signal indicative of a first wind condition at a first distance from the wind turbine. A second sensor transmits at least a second monitoring signal that is indicative of a second wind condition at a second distance from the wind turbine that is longer than the first distance to the control system. The control system calculates a wind turbine operating command based at least in part on the first monitoring signal and the second monitoring signal. One or more wind turbine components are operated based on the calculated wind turbine operating command.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: May 2, 2017
    Assignee: General Electric Company
    Inventors: Xiongzhe Huang, Danian Zheng, Wei Xiong
  • Publication number: 20170009746
    Abstract: A wind turbine tower includes a door access opening in a down tower area of the tower. A hinged door panel covers the door access opening, with a ventilation opening defined through the door panel. A multi-sided intake structure, such as a box-like structure, is connected to an exterior of the door panel over the first ventilation opening. The intake structure extends transversely from the door panel and includes a top side, a bottom side, and at least two vertical sides extending between the top side and the bottom side. The vertical sides are open to air flow therethrough. The top and bottom sides may also be open to air flow therethrough. Air from multiple directions is drawn into an interior of the wind turbine tower through the intake structure and ventilation opening. A filtering system with first and second stage filters may be incorporated with any of the intake structures.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 12, 2017
    Inventors: Pritesh Jain, Vijendra Singh Chauhan, Darren John Danielsen, Roman Kolar, Danian Zheng, Jay F. Leonard, Brian Keith Andreson, Adam Lord
  • Publication number: 20160305403
    Abstract: A system and method for reducing oscillation loads of a wind turbine induced by high turbulence and/or combined with other environmental conditions are provided. The method includes determining at least one wind parameter at the wind turbine; monitoring an operating condition of the wind turbine; determining, by a processor, a variance of at least one of the monitored operating condition or a plurality of the wind parameters, wherein the variance is indicative of an oscillation occurring at one or more wind turbine components; determining, by a processor, an operating set point based on the variance; and, operating the wind turbine based on the operating set point when the variance indicates that the oscililation has a frequency within a certain frequency band so as to modify the frequency, wherein the modified frequency is outside of the frequency band and reduces oscillation loads occurring at the one or more wind turbine components.
    Type: Application
    Filed: December 9, 2013
    Publication date: October 20, 2016
    Inventors: Danian Zheng, Xiongzhe Huang, William Edwin Holley, Conner B. Shane, Raveendra Penmatsa, Jignesh Govindlal Gandhi, Timothy Botsford Cribbs
  • Patent number: 9035231
    Abstract: In one aspect, a system for monitoring load-related parameters of a rotor blade of a wind turbine is disclosed. The system may generally include a plurality of reflective targets positioned within the rotor blade. Each reflective target may include a unique visual identifier. In addition, the system may include a light source configured to illuminate the reflective targets and a sensor configured to detect light reflected from the reflective targets.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: May 19, 2015
    Assignee: General Electric Company
    Inventors: Danian Zheng, Hua Xia, Thomas Ernst Dinjus