Patents by Inventor Danie DeWet

Danie DeWet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10221702
    Abstract: A method of imparting wear-resistance to a contact face of a turbine blade Z-notch comprising applying a flexible cladding sheet comprising a Co-based cladding alloy and an organic binder to the contact face of the Z-notch, heating the turbine blade Z-notch with flexible cladding sheet thereon to volatilize the organic binder and remove it from the cladding sheet, and further heating the turbine blade Z-notch with flexible cladding sheet thereon to sinter the cladding sheet by liquid phase sintering, thereby cladding the cladding sheet to the contact face to produce a wear-resistant layer thereon.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: March 5, 2019
    Assignee: KENNAMETAL INC.
    Inventors: Joel T. Dawson, Danie DeWet, Qingjun Zheng
  • Publication number: 20160245099
    Abstract: A method of imparting wear-resistance to a contact face of a turbine blade Z-notch comprising applying a flexible cladding sheet comprising a Co-based cladding alloy and an organic binder to the contact face of the Z-notch, heating the turbine blade Z-notch with flexible cladding sheet thereon to volatilize the organic binder and remove it from the cladding sheet, and further heating the turbine blade Z-notch with flexible cladding sheet thereon to sinter the cladding sheet by liquid phase sintering, thereby cladding the cladding sheet to the contact face to produce a wear-resistant layer thereon.
    Type: Application
    Filed: February 23, 2015
    Publication date: August 25, 2016
    Applicant: KENNAMETAL INC.
    Inventors: Joel T. Dawson, Danie DeWet, Qingjun Zheng
  • Patent number: 9339585
    Abstract: A surgical implant component comprising an implant component body manufactured from a Co-based substrate alloy comprising Co, Cr, Mo, Si, and C, and a coating on a bone-ingrowth surface of the component body manufactured from a Co-based coating alloy comprising Co, Cr, Mo, Si, C and B. The coating is a network of fused particles of the Co-based coating alloy with spherical particles, irregular aspherical particles, and between about 35 and about 70 volume % porosity. A method of manufacturing the foregoing surgical implant component.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: May 17, 2016
    Assignee: KENNAMETAL INC.
    Inventors: Matthew Yao, Rachel Collier, Abdelhakim Belhadjhamida, Danie DeWet
  • Publication number: 20150283295
    Abstract: A surgical implant component comprising an implant component body manufactured from a Co-based substrate alloy comprising Co, Cr, Mo, Si, and C, and a coating on a bone-ingrowth surface of the component body manufactured from a Co-based coating alloy comprising Co, Cr, Mo, Si, C and B. The coating is a network of fused particles of the Co-based coating alloy with spherical particles, irregular aspherical particles, and between about 35 and about 70 volume % porosity. A method of manufacturing the foregoing surgical implant component.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 8, 2015
    Applicant: Kennametal Inc.
    Inventors: Matthew Yao, Rachel Collier, Abdelhakim Belhadjhamida, Danie DeWet
  • Patent number: 9078753
    Abstract: A surgical implant component comprising an implant component body manufactured from an alloy comprising from about 23 to about 33 wt % Cr, from about 8 to about 20 wt % Mo, from about 0.05 to about 1.5 wt % Si, from about 0.35 to about 3.5 wt % C, from about 40 to about 60 wt % Co, and incidental impurities. The implant component alloy has an atomic % ratio of (Cr+Mo+Nb)/Co of at least 0.59, a matrix metallurgical microstructure comprising between about 45% and about 85% by volume face-centered cubic structure, and between about 15% and about 55% by volume hexagonal close-packed structure; and a Rockwell C hardness of greater than 35. A method for manufacturing a surgical implant component body for a surgical implant by a manufacturing method selected from the group consisting of casting, forging, and powder metallurgy pressing-plus-sintering from an alloy.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: July 14, 2015
    Assignee: KENNAMETAL INC.
    Inventors: Matthew Yao, Rachel Collier, Danie DeWet
  • Patent number: 8962154
    Abstract: A pipe or pipe fitting for use in harsh environment such as in petroleum refinery processes for cracking petroleum feedstocks, the pipe or pipe fitting comprising a 0.25 to 2.5 mm thick Co-based metallic coating on an internal surface of the pipe body, the coating having a hypereutectic microstructure characterized by carbides in a cobalt matrix and an average carbide grain size of less than 50 microns, and the Co-based metallic composition overlays the pipe internal surface at an interface which is free of heat-affected zone and which has a diffusion zone which is less than 0.002 inches thick.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: February 24, 2015
    Assignee: Kennametal Inc.
    Inventors: Matthew Yao, Louw DeJong, Danie DeWet
  • Patent number: 8828312
    Abstract: Forming a wear- and corrosion-resistant coating on an industrial component such as a chemical processing or nuclear power valve component by applying a cobalt-based dilution buffer layer to an iron-based substrate by slurry coating, and then applying by welding a cobalt-based build-up layer over the cobalt-based dilution buffer layer. An industrial component having a dilution buffer layer and a welding build-up layer thereover.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: September 9, 2014
    Assignee: Kennametal Inc.
    Inventors: Matthew Yao, Rachel Collier, Danie DeWet
  • Publication number: 20130297037
    Abstract: A surgical implant component comprising an implant component body manufactured from an alloy comprising from about 23 to about 33 wt % Cr, from about 8 to about 20 wt % Mo, from about 0.05 to about 1.5 wt % Si, from about 0.35 to about 3.5 wt % C, from about 40 to about 60 wt % Co, and incidental impurities. The implant component alloy has an atomic % ratio of (Cr+Mo+Nb)/Co of at least 0.59, a matrix metallurgical microstructure comprising between about 45% and about 85% by volume face-centered cubic structure, and between about 15% and about 55% by volume hexagonal close-packed structure; and a Rockwell C hardness of greater than 35. A method for manufacturing a surgical implant component body for a surgical implant by a manufacturing method selected from the group consisting of casting, forging, and powder metallurgy pressing-plus-sintering from an alloy.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: DELORO STELLITE HOLDINGS CORPORATION
    Inventors: Matthew Yao, Rachel Collier, Danie DeWet
  • Publication number: 20130149552
    Abstract: Forming a wear- and corrosion-resistant coating on an industrial component such as a chemical processing or nuclear power valve component by applying a cobalt-based dilution buffer layer to an iron-based substrate by slurry coating, and then applying by welding a cobalt-based build-up layer over the cobalt-based dilution buffer layer. An industrial component having a dilution buffer layer and a welding build-up layer thereover.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 13, 2013
    Applicant: DELORO STELLITE HOLDINGS CORPORATION
    Inventors: Matthew Yao, Danie DeWet
  • Publication number: 20120318399
    Abstract: A pipe or pipe fitting for use in harsh environment such as in petroleum refinery processes for cracking petroleum feedstocks, the pipe or pipe fitting comprising a 0.25 to 2.5 mm thick Co-based metallic coating on an internal surface of the pipe body, the coating having a hypereutectic microstructure characterized by carbides in a cobalt matrix and an average carbide grain size of less than 50 microns, and the Co-based metallic composition overlays the pipe internal surface at an interface which is free of heat-affected zone and which has a diffusion zone which is less than 0.002 inches thick.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 20, 2012
    Applicant: DELORO STELLITE HOLDINGS CORPORATION
    Inventors: Matthew Yao, Louw DeJong, Danie DeWet