Patents by Inventor Daniel A. Warren

Daniel A. Warren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10717435
    Abstract: Various embodiments include methods, devices, and robotic vehicle processing devices implementing such methods for automatically adjusting the minimum distance that a robotic vehicle is permitted to approach an object by a collision avoidance system based upon a classification or type of object.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: July 21, 2020
    Assignee: Qualcomm Incorporated
    Inventors: Michael Franco Taveira, Daniel Warren Mellinger, III
  • Patent number: 10719705
    Abstract: Various embodiments include methods, devices, and robotic vehicle processing devices implementing such methods for automatically adjusting the minimum distance that a robotic vehicle is permitted to approach an object by a collision avoidance system (the “proximity threshold”) to compensate for unpredictability in environmental or other conditions that may compromise control or navigation of the robotic vehicle, and/or to accommodate movement unpredictability of the object. Some embodiments enable dynamic adjustments to the proximity threshold to compensate for changes in environmental and other conditions. Some embodiments include path planning that takes into account unpredictability in environmental or other conditions plus movement unpredictability of objects in the environment.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: July 21, 2020
    Assignee: Qualcomm Incorporated
    Inventors: Michael Franco Taveira, Daniel Warren Mellinger, III
  • Patent number: 10720070
    Abstract: Various embodiments include methods, devices, and robotic vehicles that adjust a proximity threshold implemented in a collision avoidance system based on whether a payload is being carried. Methods may include determining whether a payload is carried by the robotic vehicle, setting a proximity threshold for collision avoidance in response to determining that a payload is carried by the robotic vehicle, and controlling one or more motors of the robotic vehicle using the proximity threshold for collision avoidance. Some embodiments may include raising the proximity threshold when a payload is not being carried or decreasing proximity threshold when a payload is being carried. Some embodiments may include determining a classification of a payload and setting the proximity threshold based at least in part on the classification.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: July 21, 2020
    Assignee: Qualcomm Incorporated
    Inventors: Michael Franco Taveira, Daniel Warren Mellinger, III
  • Publication number: 20200207360
    Abstract: Methods, devices and systems enable controlling an autonomous vehicle by identifying vehicles that are within a threshold distance of the autonomous vehicle, determining an autonomous capability metric of each of the identified vehicles, and adjusting a driving parameter of the autonomous vehicle based on the determined autonomous capability metric of each of the identified vehicles. Adjusting a driving parameter may include adjusting one or more of a minimum separation distance, a minimum following distance, a speed parameter, or an acceleration rate parameter.
    Type: Application
    Filed: December 26, 2019
    Publication date: July 2, 2020
    Inventors: John Anthony Dougherty, Jordan Scott Burklund, Kristen Wagner Cerase, Stephen Marc Chaves, Ross Eric Kessler, Paul Daniel Martin, Daniel Warren Mellinger, III, Michael Joshua Shomin
  • Publication number: 20200207371
    Abstract: Methods, devices and systems enable controlling an autonomous vehicle by identifying vehicles that are within a threshold distance of the autonomous vehicle, determining an autonomous capability metric of each of the identified vehicles, and adjusting a driving parameter of the autonomous vehicle based on the determined autonomous capability metric of each of the identified vehicles. Embodiments may further include determining, based on the determined ACMs, whether one or more identified vehicles would provide an operational advantage to the autonomous vehicle in a cooperative driving engagement, and initiating a cooperative driving engagement with the one or more identified vehicles in response to determining that the one or more identified vehicles would provide an operational advantage to the autonomous vehicle in a cooperative driving engagement.
    Type: Application
    Filed: December 26, 2019
    Publication date: July 2, 2020
    Inventors: John Anthony DOUGHERTY, Jordan Scott BURKLUND, Kristen Wagner CERASE, Stephen Marc CHAVES, Ross Eric KESSLER, Paul Daniel MARTIN, Daniel Warren MELLINGER, III, Michael Joshua SHOMIN
  • Publication number: 20200201353
    Abstract: Various embodiments include methods and interactive traffic control devices for interactively controlling traffic, which may include receiving refined location and state information associated with individual vehicles on a roadway, and determining customized dynamic traffic control instructions for a first one or more of the individual vehicles. The determined customized dynamic traffic control instructions may be based on the received refined location and state information and offer an optional route alternative to a set limited number of the individual vehicles. The first customized dynamic traffic control instructions may be transmitted by the interactive traffic control device to the first one or more of the individual vehicles.
    Type: Application
    Filed: August 8, 2019
    Publication date: June 25, 2020
    Inventors: Paul Daniel MARTIN, Jonathan Paul Davis, Michael Joshua Shomin, Stephen Marc Chaves, Daniel Warren Mellinger, III, John Anthony Dougherty, Aleksandr Kushleyev, Travis Van Schoyck, Ross Eric Kessler, Moussa Ben Coulibaly, Kristen Wagner Cerase
  • Publication number: 20200202711
    Abstract: Various embodiments include methods and interactive traffic control devices implementing such methods to receive refined location and state information associated with individual vehicles and determine first customized dynamic traffic control instructions for a first one or more of the individual vehicles and second customized dynamic traffic control instructions for a second one or more of the individual vehicles different from the first one or more of the individual vehicles. The first customized dynamic traffic control instructions may be transmitted to the first one or more of the individual vehicles, and the second customized dynamic traffic control instructions may be transmitted to the second one or more of the individual vehicles.
    Type: Application
    Filed: August 8, 2019
    Publication date: June 25, 2020
    Inventors: Paul Daniel Martin, Jonathan Paul Davis, Michael Joshua Shomin, Stephen Marc Chaves, Daniel Warren Mellinger, III, John Anthony Dougherty, Aleksandr Kushleyev, Travis Van Schoyck, Ross Eric Kessler, Moussa Ben Coulibaly, Kristen Wagner Cerase
  • Publication number: 20200200563
    Abstract: Various embodiments include methods, systems, and devices for interactively controlling traffic. The method, which may be performed by operations of the systems and/or devices, may include receiving, for example by an interactive traffic control device, refined location and state information associated with a first vehicle on a roadway. The interactive traffic control device may also determine at least one notable element in the refined location and state information, customized dynamic traffic control instructions based on the refined location and state information, and whether the customized dynamic traffic control instructions conflict with the at least one notable element. In addition, the interactive traffic control device may transmit the customized dynamic traffic control instructions to the first vehicle in response to determining the customized dynamic traffic control instructions do not conflict with the at least one notable element.
    Type: Application
    Filed: August 8, 2019
    Publication date: June 25, 2020
    Inventors: Paul Daniel Martin, Jonathan Paul Davis, Michael Joshua Shomin, Stephen Marc Chaves, Daniel Warren Mellinger, III, John Anthony Dougherty, Aleksandr Kushleyev, Travis Van Schoyck, Ross Eric Kessler, Moussa Ben Coulibaly, Kristen Wagner Cerase
  • Publication number: 20200197090
    Abstract: The present invention relates to comprehensive systems, devices and methods for delivering energy to tissue for a wide variety of applications, including medical procedures (e.g., tissue ablation, resection, cautery, vascular thrombosis, treatment of cardiac arrhythmias and dysrhythmias, electrosurgery, tissue harvest, etc.). In certain embodiments, systems, devices, and methods are provided for delivering energy to difficult to access tissue regions (e.g. peripheral lung tissues), and/or reducing the amount of undesired heat given off during energy delivery.
    Type: Application
    Filed: February 20, 2020
    Publication date: June 25, 2020
    Inventors: Daniel Warren Van der Weide, Fred T. Lee, JR., Christopher Lee Brace, Richard W. Schefelker, Laura G. King, Mark Thom, Matthew Thiel
  • Publication number: 20200202706
    Abstract: Various aspects may include methods enabling a vehicle to broadcast intentions and/or motion plans to surrounding vehicles. Various aspects include methods for using intentions and/or motion plans received from one or more surrounding vehicles.
    Type: Application
    Filed: June 13, 2019
    Publication date: June 25, 2020
    Inventors: Stephen Marc Chaves, Daniel Warren Mellinger, III, Paul Daniel Martin, Michael Joshua Shomin
  • Publication number: 20200189591
    Abstract: Various embodiments may include methods of limiting a steering command angle during operation of a vehicle. Various embodiments may include determining a speed of the vehicle, applying the determined speed to a dynamic model of the autonomous vehicle to determine a steering wheel command angle limit. Embodiments may further include determining whether a received or commanded steering command angle exceeds the steering wheel command angle limit and altering the steering command angle to an angle no greater than the maximum steering command angle if the received/commanded steering command angle exceeds the steering wheel command angle limit.
    Type: Application
    Filed: May 29, 2019
    Publication date: June 18, 2020
    Inventors: Daniel Warren Mellinger III, Travis Van Schoyck, Matthew Hyatt Turpin
  • Patent number: 10678416
    Abstract: A thermostat for controlling an HVAC system in an enclosure may include a passive infrared sensor, an active infrared sensor, and an electronic display having a first mode and a second mode. The thermostat may also include one or more processors programmed to change a setpoint temperature of the thermostat to an energy-saving temperature upon detection of a non-occupancy condition for the enclosure. The processor(s) may detect the non-occupancy condition based at least in part on readings received from the passive infrared sensor. The processor(s) may also be programmed to change the electronic display from the first mode to the second mode upon detection of a person approaching the thermostat. The processor(s) may detect a person approaching the thermostat based at least in part on readings received from the active infrared sensor.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: June 9, 2020
    Assignee: Google LLC
    Inventors: Anthony Fadell, Matthew Rogers, Edwin Satterthwaite, Ian Smith, Daniel Warren, Joseph Palmer, Shigefumi Honjo, Grant Erickson, Jonathan Dutra, Hugo Fiennes
  • Patent number: 10678200
    Abstract: A control system may be configured to learn a heating schedule at a first location according to an automated schedule learning algorithm that processes inputs including user inputs and occupancy sensing inputs and derives schedule-affecting parameters therefrom that are processed to compute the control schedule. The control system may also be configured to determine whether a thermostat has been moved to a new location, and if it is determined that the thermostat has been moved to the new location, then determine one or more parameters associated with the new location and establish a new control schedule for the new location, where zero or more of the schedule-affecting parameters are re-used based on the one or more parameters associated with the new location.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: June 9, 2020
    Assignee: Google LLC
    Inventors: Yoky Matsuoka, Daniel A. Warren, Anthony M. Fadell, Matthew L. Rogers, Helen Vo
  • Publication number: 20200140323
    Abstract: A method includes impregnating a region of a glass sheet with a filler material in a liquid state. The glass sheet includes a plurality of glass soot particles. The filler material is solidified subsequent to the impregnating step to form a glass/filler composite region of the glass sheet.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: Daniel Warren Hawtof, Nathan Michael Hill, Eric Yun Kuei Lynn, Catherine Michiko Magee, Brenton Allen Noll, Daniel Roberto Shneyer, Steven Bryan Shooter
  • Patent number: 10636314
    Abstract: Various embodiments include methods and aerial robotic vehicles that adjust a flight control parameter based on whether propeller guards are installed. An aerial robotic vehicle processor may determine whether a propeller guard is installed, set a flight parameter based on the determination, and control one or more motors of the aerial robotic vehicle using the flight parameter. When propeller guards are installed, the flight parameter may be set to a value appropriate for controlling the aerial robotic vehicle when the propeller guard is installed. The flight parameter may be one or more of control gains, drag profile control settings, a maximum rotor speed, maximum speed of the aerial robotic vehicle, maximum power usage, restrictions to select modes of operation, visual algorithm settings, or a flight plan. Data from one or more sensors and/or motor controllers may be used to determine the presence of a propeller guard.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: April 28, 2020
    Assignee: Qualcomm Incorporated
    Inventors: Michael Franco Taveira, Daniel Warren Mellinger, III
  • Publication number: 20200127435
    Abstract: Laser waveguides, methods and systems for forming a laser waveguide are provided. The waveguide includes an inner cladding layer surrounding a central axis and a glass core surrounding and located outside of the inner cladding layer. The glass core includes a laser-active material. The waveguide includes an outer cladding layer surrounding and located outside of the glass core. The inner cladding, outer cladding and/or core may surround a hollow central channel or bore and may be annular in shape.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Douglas Llewellyn Butler, Daniel Warren Hawtof
  • Publication number: 20200116968
    Abstract: Methods for manufacturing cables and cables assemblies include providing powder particles within a tube extruded about optical fiber. The particles may be accelerated so that as they strike the tube and mechanically attach to the tube.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 16, 2020
    Inventors: Rodney Maurice Burns, Andrey V. Filippov, Riley Saunders Freeland, Daniel Warren Hawtof, Warren Welborn McAlpine, Catharina Lemckert Tedder
  • Publication number: 20200115347
    Abstract: Compounds and methods for treating diseases mediated by a P2X3 and/or a P2X2/3 receptor antagonist, the methods comprising administering to a subject in need thereof an effective amount of a compound of formula (I): or a pharmaceutically acceptable salt, solvate or prodrug thereof, wherein X is O, D, Y, R1, R2, R3, R4, R5, R6, R7 and R8 are as defined herein.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Applicant: Roche Palo Alto LLC
    Inventors: Chris Allen Broka, David Scott Carter, Michael Patrick Dillon, Ronald Charles Hawley, Alam Jahangir, Clara Jeou Jen Lin, Daniel Warren Parish
  • Patent number: 10619926
    Abstract: A method for processing material includes sintering a portion of a sheet of material at a location on the sheet, moving the sintering location along the sheet of material at a first rate, and pulling the sintered material away from the sintering location at a second rate that is greater than the first rate.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: April 14, 2020
    Assignee: Corning Incorporated
    Inventors: Steven Edward DeMartino, Daniel Warren Hawtof, Archit Lal, Xinghua Li, Daniel L Maurey, Kevin William Uhlig
  • Patent number: 10603106
    Abstract: The present invention relates to comprehensive systems, devices and methods for delivering energy to tissue for a wide variety of applications, including medical procedures (e.g., tissue ablation, resection, cautery, vascular thrombosis, treatment of cardiac arrhythmias and dysrhythmias, electrosurgery, tissue harvest, etc.). In certain embodiments, systems, devices, and methods are provided for delivering energy to difficult to access tissue regions (e.g. peripheral lung tissues), and/or reducing the amount of undesired heat given off during energy delivery.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: March 31, 2020
    Assignee: NEUWAVE MEDICAL, INC.
    Inventors: Daniel Warren Van der Weide, Fred T. Lee, Jr., Christopher Lee Brace, Richard W. Schefelker, Laura G. King, Mark Thom, Matthew Thiel