Patents by Inventor Daniel B. Bergstrom

Daniel B. Bergstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11094587
    Abstract: In one embodiment, a conductive connector for a microelectronic component may be formed with a noble metal layer, acting as an adhesion/wetting layer, disposed between a barrier liner and a conductive fill material. In a further embodiment, the conductive connector may have a noble metal conductive fill material disposed directly on the barrier liner. The use of a noble metal as an adhesion/wetting layer or as a conductive fill material may improve gapfill and adhesion, which may result in the conductive connector being substantially free of voids, thereby improving the electrical performance of the conductive connector relative to conductive connectors without a noble metal as the adhesion/wetting layer or the conductive fill material.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: August 17, 2021
    Assignee: Intel Corporation
    Inventors: Christopher J. Jezewski, Srijit Mukherjee, Daniel B. Bergstrom, Tejaswi K. Indukuri, Flavio Griggio, Ramanan V. Chebiam, James S. Clarke
  • Patent number: 11063151
    Abstract: Metal chemical vapor deposition approaches for fabricating wrap-around contacts, and semiconductor structures having wrap-around metal contacts, are described. In an example, an integrated circuit structure includes a semiconductor feature above a substrate. A dielectric layer is over the semiconductor feature, the dielectric layer having a trench exposing a portion of the semiconductor feature, the portion having a non-flat topography. A metallic contact material is directly on the portion of the semiconductor feature. The metallic contact material is conformal with the non-flat topography of the portion of the semiconductor feature. The metallic contact material has a total atomic composition including 95% or greater of a single metal species.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 13, 2021
    Assignee: Intel Corporation
    Inventors: Jeffrey S. Leib, Daniel B. Bergstrom, Christopher J. Wiegand
  • Patent number: 11018222
    Abstract: Disclosed herein are structures, methods, and assemblies related to metallization in integrated circuit (IC) structures. For example, in some embodiments, an IC structure may include a first nanowire in a metal region and a second nanowire in the metal region. A distance between the first nanowire and the second nanowire may be less than 5 nanometers, and the metal region may include tungsten between the first nanowire and the second nanowire.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: May 25, 2021
    Assignee: Intel Corporation
    Inventors: Daniel B. O'Brien, Christopher J. Wiegand, Lukas M. Baumgartel, Oleg Golonzka, Dan S. Lavric, Daniel B. Bergstrom, Jeffrey S. Leib, Timothy Michael Duffy, Dax M. Crum
  • Patent number: 10804460
    Abstract: Material layer stack structures to provide a magnetic tunnel junction (MTJ) having improved perpendicular magnetic anisotropy (PMA) characteristics. In an embodiment, a free magnetic layer of the material layer stack is disposed between a tunnel barrier layer and a cap layer of magnesium oxide (Mg). The free magnetic layer includes a Cobalt-Iron-Boron (CoFeB) body substantially comprised of a combination of Cobalt atoms, Iron atoms and Boron atoms. A first Boron mass fraction of the CoFeB body is equal to or more than 25% (e.g., equal to or more than 27%) in a first region which adjoins an interface of the free magnetic layer with the tunnel barrier layer. In another embodiment, the first Boron mass fraction is more than a second Boron mass fraction in a second region of the CoFeB body which adjoins an interface of the free magnetic layer with the cap layer.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: October 13, 2020
    Assignee: Intel Corporation
    Inventors: MD Tofizur Rahman, Christopher J. Wiegand, Brian Maertz, Daniel G. Ouellette, Kevin P. O'Brien, Kaan Oguz, Brian S. Doyle, Mark L. Doczy, Daniel B. Bergstrom, Justin S. Brockman, Oleg Golonzka, Tahir Ghani
  • Patent number: 10777421
    Abstract: Technologies for selectively etching oxide and nitride materials on a work piece are described. Such technologies include methods for etching a work piece with a remote plasma that is produced by igniting a plasma gas flow. Microelectronic devices including first and second fins that are laterally offset by a fin pitch to define a first field there between are also described. In embodiments the microelectronic devices include a conformal oxide layer and a conformal nitride layer on at least a portion of the first and second fins, where the conformal nitride layer is on at least a portion of the conformal oxide layer and a sacrificial oxide material is disposed within the first field.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: September 15, 2020
    Assignee: Intel Corporation
    Inventors: Jason A. Farmer, Gopinath Trichy, Justin S. Sandford, Daniel B. Bergstrom
  • Patent number: 10651082
    Abstract: In an example, there is disclosed a chemical compound, including a transition metal, a post-transition metal, a metalloid, and a nonmetal. By way of non-limiting example, the post-transition metal may be aluminum. The transition metal is selected from the group consisting of tungsten, tantalum, hafnium, molybdenum, niobium, zirconium, vanadium, and titanium. The metalloid may be boron or silicon. The nonmetal may be carbon or nitrogen. The compound may be used, for example, as a barrier material in an integrated circuit.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: May 12, 2020
    Assignee: Intel Corporation
    Inventors: Daniel J. Zierath, Jason A. Farmer, Daniel B. Bergstrom
  • Publication number: 20200066645
    Abstract: Embodiments of the invention include a microelectronic device that includes a substrate having a layer of dielectric material that includes a feature with a depression, a Tungsten containing barrier liner layer formed in the depression of the feature, and a Cobalt conductive layer deposited on the Tungsten containing barrier liner layer in the depression of the feature. The Tungsten containing barrier liner layer provides adhesion for the Cobalt conductive layer.
    Type: Application
    Filed: September 30, 2016
    Publication date: February 27, 2020
    Applicant: Intel Corporation
    Inventors: Jason A. FARMER, Jeffrey S. LEIB, Michael L. MCSWINEY, Harsono S. SIMKA, Daniel B. BERGSTROM
  • Publication number: 20190393336
    Abstract: Metal chemical vapor deposition approaches for fabricating wrap-around contacts, and semiconductor structures having wrap-around metal contacts, are described. In an example, an integrated circuit structure includes a semiconductor feature above a substrate. A dielectric layer is over the semiconductor feature, the dielectric layer having a trench exposing a portion of the semiconductor feature, the portion having a non-flat topography. A metallic contact material is directly on the portion of the semiconductor feature. The metallic contact material is conformal with the non-flat topography of the portion of the semiconductor feature. The metallic contact material has a total atomic composition including 95% or greater of a single metal species.
    Type: Application
    Filed: March 30, 2017
    Publication date: December 26, 2019
    Inventors: Jeffrey S. LEIB, Daniel B. BERGSTROM, Christopher J. WIEGAND
  • Publication number: 20190140166
    Abstract: Material layer stack structures to provide a magnetic tunnel junction (MTJ) having improved perpendicular magnetic anisotropy (PMA) characteristics. In an embodiment, a free magnetic layer of the material layer stack is disposed between a tunnel barrier layer and a cap layer of magnesium oxide (Mg). The free magnetic layer includes a Cobalt-Iron-Boron (CoFeB) body substantially comprised of a combination of Cobalt atoms, Iron atoms and Boron atoms. A first Boron mass fraction of the CoFeB body is equal to or more than 25% (e.g., equal to or more than 27%) in a first region which adjoins an interface of the free magnetic layer with the tunnel barrier layer. In another embodiment, the first Boron mass fraction is more than a second Boron mass fraction in a second region of the CoFeB body which adjoins an interface of the free magnetic layer with the cap layer.
    Type: Application
    Filed: July 1, 2016
    Publication date: May 9, 2019
    Inventors: MD Tofizur RAHMAN, Christopher J. WIEGAND, Brian MAERTZ, Daniel G. OUELLETTE, Kevin P. O'BRIEN, Kaan OGUZ, Brian S. DOYLE, Mark L. DOCZY, Daniel B. BERGSTROM, Justin S. BROCKMAN, Oleg GOLONZKA, Tahir GHANI
  • Publication number: 20190088538
    Abstract: In an example, there is disclosed a chemical compound, including a transition metal, a post-transition metal, a metalloid, and a nonmetal. By way of non-limiting example, the post-transition metal may be aluminum. The transition metal is selected from the group consisting of tungsten, tantalum, hafnium, molybdenum, niobium, zirconium, vanadium, and titanium. The metalloid may be boron or silicon. The nonmetal may be carbon or nitrogen. The compound may be used, for example, as a barrier material in an integrated circuit.
    Type: Application
    Filed: March 31, 2016
    Publication date: March 21, 2019
    Applicant: Intel Corporation
    Inventors: Daniel J. Zierath, Jason A. Farmer, Daniel B. Bergstrom
  • Publication number: 20180322994
    Abstract: Embodiments of the disclosure are directed to a magnetic tunneling junction (MTJ) that includes a diffusion barrier. The diffusion barrier can be disposed between two ferromagnetic layers of the MTJ. More specifically, the diffusion barrier can be disposed between a first ferromagnetic layer, which is adjacent to a natural antiferromagnetic layer, and a second ferromagnetic layer; the first and second ferromagnetic layers and the diffusion barrier being part of a synthetic antiferromagnet. The diffusion barrier can be made of a refractory metal, such as tantalum. The diffusion barrier acts as a barrier for manganese diffusion from the natural antiferromagnetic layer into the synthetic antiferromagnet and other higher layers of the MTJ.
    Type: Application
    Filed: December 7, 2015
    Publication date: November 8, 2018
    Applicant: Intel Corporation
    Inventors: Tofizur RAHMAN, Christopher J. WIEGAND, Daniel B. BERGSTROM
  • Patent number: 10096513
    Abstract: An aspect of the present disclosure relates to a method of forming a barrier layer on a semiconductor device. The method includes placing a substrate into a reaction chamber and depositing a barrier layer over the substrate. The barrier layer includes a metal and a non-metal and the barrier layer exhibits an as-deposited thickness of 4 nm or less. The method further includes densifying the barrier layer by forming plasma from a gas proximate to said barrier layer and reducing the thickness and increasing the density of the barrier layer. In embodiments, during densification 300 Watts or less of power is applied to the plasma at a frequency of 350 kHz to 40 MHz.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: October 9, 2018
    Assignee: Intel Corporation
    Inventors: Jason A. Farmer, Jeffrey S. Leib, Daniel B. Bergstrom
  • Patent number: 10020375
    Abstract: The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of gates within non-planar NMOS transistors, wherein an NMOS work-function material, such as a composition of aluminum, titanium, and carbon, may be used in conjunction with a titanium-containing gate fill barrier to facilitate the use of a tungsten-containing conductive material in the formation of a gate electrode of the non-planar NMOS transistor gate.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: July 10, 2018
    Assignee: Intel Corporation
    Inventors: Sameer S. Pradhan, Daniel B. Bergstrom, Jin-Sung Chun, Julia Chiu
  • Publication number: 20180151423
    Abstract: In one embodiment, a conductive connector for a microelectronic component may be formed with a noble metal layer, acting as an adhesion/wetting layer, disposed between a barrier liner and a conductive fill material. In a further embodiment, the conductive connector may have a noble metal conductive fill material disposed directly on the barrier liner. The use of a noble metal as an adhesion/wetting layer or as a conductive fill material may improve gapfill and adhesion, which may result in the conductive connector being substantially free of voids, thereby improving the electrical performance of the conductive connector relative to conductive connectors without a noble metal as the adhesion/wetting layer or the conductive fill material.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 31, 2018
    Inventors: Christopher J. Jezewski, Srijit Mukherjee, Daniel B. Bergstrom, Tejaswi K. Indukuri, Flavio Griggio, Ramanan V. Chebiam, James S. Clarke
  • Publication number: 20180047825
    Abstract: The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of gates within non-planar NMOS transistors, wherein an NMOS work-function material, such as a composition of aluminum, titanium, and carbon, may be used in conjunction with a titanium-containing gate fill barrier to facilitate the use of a tungsten-containing conductive material in the formation of a gate electrode of the non-planar NMOS transistor gate.
    Type: Application
    Filed: October 6, 2017
    Publication date: February 15, 2018
    Applicant: Intel Corporation
    Inventors: Sameer S. Pradhan, Daniel B. Bergstrom, Jin-Sung Chun, Julia Chiu
  • Publication number: 20180005841
    Abstract: Technologies for selectively etching oxide and nitride materials on a work piece are described. Such technologies include methods for etching a work piece with a remote plasma that is produced by igniting a plasma gas flow. By controlling the flow rate of various components of the plasma gas flow, plasmas exhibiting desired etching characteristics may be obtained. Such plasmas may be used in single or multistep etching operations, such as recess etching operations that may be used in the production of non-planar microelectronic devices.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 4, 2018
    Applicant: Intel Corporation
    Inventors: Jason A. Farmer, Gopinath Trichy, Justin S. Sandford, Daniel B. Bergstrom
  • Patent number: 9812546
    Abstract: The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of gates within non-planar NMOS transistors, wherein an NMOS work-function material, such as a composition of aluminum, titanium, and carbon, may be used in conjunction with a titanium-containing gate fill barrier to facilitate the use of a tungsten-containing conductive material in the formation of a gate electrode of the non-planar NMOS transistor gate.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: November 7, 2017
    Assignee: Intel Corporation
    Inventors: Sameer S. Pradhan, Daniel B. Bergstrom, Jin-Sung Chun, Julia Chiu
  • Publication number: 20170278748
    Abstract: An aspect of the present disclosure relates to a method of forming a barrier layer on a semiconductor device. The method includes placing a substrate into a reaction chamber and depositing a barrier layer over the substrate. The barrier layer includes a metal and a non-metal and the barrier layer exhibits an as-deposited thickness of 4 nm or less. The method further includes densifying the barrier layer by forming plasma from a gas proximate to said barrier layer and reducing the thickness and increasing the density of the barrier layer. In embodiments, during densification 300 Watts or less of power is applied to the plasma at a frequency of 350 kHz to 40 MHz.
    Type: Application
    Filed: June 9, 2017
    Publication date: September 28, 2017
    Applicant: Intel Corporation
    Inventors: JASON A. FARMER, JEFFREY S. LEIB, DANIEL B. BERGSTROM
  • Patent number: 9711399
    Abstract: An aspect of the present disclosure relates to a method of forming a barrier layer on a semiconductor device. The method includes placing a substrate into a reaction chamber and depositing a barrier layer over the substrate. The barrier layer includes a metal and a non-metal and the barrier layer exhibits an as-deposited thickness of 4 nm or less. The method further includes densifying the barrier layer by forming plasma from a gas proximate to said barrier layer and reducing the thickness and increasing the density of the barrier layer. In embodiments, during densification 300 Watts or less of power is applied to the plasma at a frequency of 350 kHz to 40 MHz.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: July 18, 2017
    Assignee: Intel Corporation
    Inventors: Jason A. Farmer, Jeffrey S. Leib, Daniel B. Bergstrom
  • Patent number: 9637810
    Abstract: The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of gates within non-planar NMOS transistors, wherein an NMOS work-function material, such as a composition of aluminum, titanium, and carbon, may be used in conjunction with a titanium-containing gate fill barrier to facilitate the use of a tungsten-containing conductive material in the formation of a gate electrode of the non-planar NMOS transistor gate.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: May 2, 2017
    Assignee: Intel Corporation
    Inventors: Sameer S. Pradhan, Daniel B. Bergstrom, Jin-Sung Chun, Julia Chiu