Patents by Inventor Daniel B. Lillig

Daniel B. Lillig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8637166
    Abstract: Provided are strain hardened high strength nickel based alloy welds that yield improved properties and performance in joining high strength metals. The advantageous weldments include two or more segments of ferrous or non-ferrous components, and fusion welds, friction stir welds, electron beam welds, laser beam welds, or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a strain hardened nickel based alloy weld metal composition including greater than or equal to 10 wt % Mo based on the total weight of the nickel based alloy weld metal composition. Also provided are methods for forming the welds from the nickel based alloy weld compositions. The strain hardened high strength nickel based alloy welds are useful in the oil, gas and petrochemical industry in applications for natural gas transportation and storage, oil and gas well completion and production, and oil and gas refinery and chemical plants.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: January 28, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Raghavan Ayer, Neeraj Srinivas Thirumalai, Hyun-Woo Jin, Daniel B. Lillig, Douglas Paul Fairchild, Steven Jeffrey Ford
  • Patent number: 8426033
    Abstract: Provided are precipitation hardened high strength nickel based alloy welds that yield improved properties and performance in joining high strength metals. The advantageous weldments include two or more segments of ferrous or non-ferrous components, and fusion welds, friction stir welds, electron beam welds, laser beam welds, or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a precipitation hardened nickel based alloy weld metal composition including greater than or equal to 1.4 wt % of combined aluminum and titanium based on the total weight of the nickel based alloy weld metal composition. Also provided are methods for forming the welds from the nickel based alloy weld compositions, wherein the precipitation hardening occurs in the as-welded condition. The nickel based welds do not require a separate heat treatment step after welding to produce advantageous strength properties.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: April 23, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Raghavan Ayer, Neeraj Srinivas Thirumalai, Hyun-Woo Jin, Daniel B. Lillig, Douglas Paul Fairchild, Steven Jeffrey Ford
  • Patent number: 8168306
    Abstract: Provided are metal structures and methods of forming such structures for use in oil, gas and/or petrochemical applications that are joined with non-ferrous weld metal compositions or a high alloy weld metal compositions. The welded metal structures include two or more segments of ferrous or non-ferrous components, and fusion welds, friction stir welds or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a non-ferrous weld metal composition or a high alloy weld metal composition that is substantially different from the metal composition of the two or more components. The resultant welded structures exhibit improvements in fatigue resistance, toughness, strain capacity, strength, stress corrosion cracking resistance, and hydrogen embrittlement resistance compared to traditional iron-based weld compositions.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: May 1, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Raghavan Ayer, Neeraj S. Thirumalai, Daniel B. Lillig, Steven J. Ford, Douglas P. Fairchild
  • Publication number: 20100021761
    Abstract: Provided are strain hardened high strength nickel based alloy welds that yield improved properties and performance in joining high strength metals. The advantageous weldments include two or more segments of ferrous or non-ferrous components, and fusion welds, friction stir welds, electron beam welds, laser beam welds, or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a strain hardened nickel based alloy weld metal composition including greater than or equal to 10 wt % Mo based on the total weight of the nickel based alloy weld metal composition. Also provided are methods for forming the welds from the nickel based alloy weld compositions. The strain hardened high strength nickel based alloy welds are useful in the oil, gas and petrochemical industry in applications for natural gas transportation and storage, oil and gas well completion and production, and oil and gas refinery and chemical plants.
    Type: Application
    Filed: December 16, 2008
    Publication date: January 28, 2010
    Inventors: Raghavan Ayer, Neeraj Srinivas Thirumalai, Hyun-Woo Jin, Daniel B. Lillig, Douglas Paul Fairchild, Steven Jeffrey Ford
  • Publication number: 20090155623
    Abstract: Provided are precipitation hardened high strength nickel based alloy welds that yield improved properties and performance in joining high strength metals. The advantageous weldments include two or more segments of ferrous or non-ferrous components, and fusion welds, friction stir welds, electron beam welds, laser beam welds, or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a precipitation hardened nickel based alloy weld metal composition including greater than or equal to 1.4 wt % of combined aluminum and titanium based on the total weight of the nickel based alloy weld metal composition. Also provided are methods for forming the welds from the nickel based alloy weld compositions, wherein the precipitation hardening occurs in the as-welded condition. The nickel based welds do not require a separate heat treatment step after welding to produce advantageous strength properties.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 18, 2009
    Inventors: Raghavan Ayer, Neeraj Srinivas Thirumalai, Hyun-Woo Jin, Daniel B. Lillig, Douglas Paul Fairchild, Steven Jeffrey Ford
  • Publication number: 20090075118
    Abstract: Provided are metal structures and methods of forming such structures for use in oil, gas and/or petrochemical applications that are joined with non-ferrous weld metal compositions or a high alloy weld metal compositions. The welded metal structures include two or more segments of ferrous or non-ferrous components, and fusion welds, friction stir welds or a combination thereof bonding adjacent segments of the components together, wherein the welds comprise a non-ferrous weld metal composition or a high alloy weld metal composition that is substantially different from the metal composition of the two or more components. The resultant welded structures exhibit improvements in fatigue resistance, toughness, strain capacity, strength, stress corrosion cracking resistance, and hydrogen embrittlement resistance compared to traditional iron-based weld compositions.
    Type: Application
    Filed: September 18, 2007
    Publication date: March 19, 2009
    Inventors: Raghavan Ayer, Neeraj S. Thirumalai, Daniel B. Lillig, Steven J. Ford, Douglas P. Fairchild
  • Patent number: 6845900
    Abstract: Methods of welding two pieces of metal to produce a weld joint having excellent fracture toughness are provided. Two pieces of metal are positioned for welding so as to form a narrow weld groove having two sidewalls with bevel angles of less than about 10°. Two or more layers are applied to the weld groove to produce the weld joint such that the heat-affected-zone of the weld joint is substantially free of rogue grains.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: January 25, 2005
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Douglas P. Fairchild, Ali M. Farah, Daniel B. Lillig
  • Publication number: 20030218056
    Abstract: Methods of welding two pieces of metal to produce a weld joint having excellent fracture toughness are provided. Two pieces of metal are positioned for welding so as to form a narrow weld groove having two sidewalls with bevel angles of less than about 10°. Two or more layers are applied to the weld groove to produce the weld joint such that the heat-affected-zone of the weld joint is substantially free of rogue grains.
    Type: Application
    Filed: May 19, 2003
    Publication date: November 27, 2003
    Inventors: Douglas P. Fairchild, Ali M. Farah, Daniel B. Lillig