Patents by Inventor Daniel C. Merkel

Daniel C. Merkel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912641
    Abstract: A method of producing trifluoroiodomethane (CF3I) includes providing a feedstock comprising trifluoroacetyl iodide (TFAI), passing the feedstock through at least one column charged with carbonaceous materials to remove hydrogen iodide (HI), hydrogen triiodide (HI3) and iodine (I2) from the feedstock, and providing the feedstock to a reactor to produce a trifluoroiodomethane product stream. Another method of producing trifluoroiodomethane (CF3I) includes providing a feedstock comprising trifluoroacetyl iodide (TFAI) to a reactor to produce a trifluoroiodomethane product stream, and passing the trifluoroiodomethane product stream from the reactor through at least one column charged with carbonaceous materials to remove hydrogen iodide (HI), hydrogen triiodide (HI3) and iodine (I2) from the trifluoroiodomethane product stream.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: February 27, 2024
    Assignee: Honeywell International Inc.
    Inventors: Haiyou Wang, Daniel C. Merkel
  • Publication number: 20240018072
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane (CF3I), with a low concentration of methyl propane. Specifically, the present disclosure provides a process for producing trifluoroiodomethane (CF3I) with an amount of methyl propane of 100 ppm or less.
    Type: Application
    Filed: July 14, 2023
    Publication date: January 18, 2024
    Inventors: Daniel C. Merkel, Haluk Kopkalli, Haiyou Wang, Terris Yang
  • Publication number: 20240018074
    Abstract: Two methods for reducing CFC impurities and, in particular, CFC-114, in the HFO-1234ze(E) production process from the reaction of CFC-113 and HF. The first method involves subjecting an intermediate or recycle stream to separation and distillation to purge CFC-113 from the process. The second method involves operating the separation at a higher pressure avoids the formation of an azeotrope between CFC-113 and HFC-245fa. The CFC-113/HFC245fa azeotrope is discussed, as well as other optional processes for removal or mitigation of CFC-113 which include further separations that remove CFC-114 from the HFO-1234ze(E) product and/or CFC-113 from the HFC-245fa feed to produce an HFO-1234ze(E) product that is largely free from CFC-114 and other CFC impurities.
    Type: Application
    Filed: July 6, 2023
    Publication date: January 18, 2024
    Inventors: Richard D. Horwath, Haluk Kopkalli, Gustavo Cerri, Joshua Close, Daniel C. Merkel, Jennifer W. McClaine, Alex C. Fattore, Hang T. Pham, Carlos Navar, Justin Howard
  • Publication number: 20230150900
    Abstract: Provided is a process for making 2-chloro-1,1,1,2-tetrafluoropropane. The process has the step of hydrofluorinating 2-chloro-3,3,3-trifluoropropene in the presence of a catalyst selected from the group consisting of SbCl3, SbCl5, SbF5, TiCl4, SnCl4, Cr2O3, and fluorinated Cr2O3.
    Type: Application
    Filed: January 23, 2023
    Publication date: May 18, 2023
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Daniel C. Merkel, Robert C. Johnson, Hsueh Sung Tung
  • Patent number: 11565992
    Abstract: The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and trifluoroacetyl chloride (CF3COCl), methods of forming same, and methods of separating, or breaking, the azeotrope or azeotrope-like compositions of trifluoroiodomethane (CF3I) and trifluoroacetyl chloride (CF3COCl).
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: January 31, 2023
    Assignee: Honeywell International Inc.
    Inventors: Haluk Kopkalli, Joshua Close, Pramod K W Harikumar Warrier, Daniel C. Merkel
  • Publication number: 20230002657
    Abstract: Heterogenous azeotrope or azeotrope-like compositions comprising 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and water which may include from about 0.05 wt. % to about 92.01 wt. % 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and from about 7.99 wt. % to about 99.95 wt. % water and having a boiling point between about—13.5° C. and about 14.5° C. at a pressure of between about 12.5 psia and about 16.5 psia. The azeotrope or azeotrope-like compositions may be used to separate impurities from 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb).
    Type: Application
    Filed: November 5, 2020
    Publication date: January 5, 2023
    Inventors: Haluk Kopkalli, Daniel C. Merkel, Hang T. Pham
  • Publication number: 20220411354
    Abstract: A method for conversion of a composition containing HCFO-1233zd(Z) and HCFC-244fa to form HCFO-1233zd(E) by reacting a mixture including HCFO-1233zd(Z) and HCFC-244fa in a vapor phase in the presence of a catalyst to simultaneously isomerize HCFC-1233zd(Z) to form HCFO-1233zd(E) and dehydrohalogenate HCFC-244fa to form HCFO-1233zd(E). The catalyst may be a chromium-based catalyst such as chromium trifluoride, chromium oxyfluoride, or chromium oxide, for example.
    Type: Application
    Filed: August 28, 2022
    Publication date: December 29, 2022
    Inventors: Christian Jungong, Daniel C. Merkel
  • Publication number: 20220402843
    Abstract: A method of producing trifluoroiodomethane (CF3I) includes providing a feedstock comprising trifluoroacetyl iodide (TFAI), passing the feedstock through at least one column charged with carbonaceous materials to remove hydrogen iodide (HI), hydrogen triiodide (HI3) and iodine (I2) from the feedstock, and providing the feedstock to a reactor to produce a trifluoroiodomethane product stream. Another method of producing trifluoroiodomethane (CF3I) includes providing a feedstock comprising trifluoroacetyl iodide (TFAI) to a reactor to produce a trifluoroiodomethane product stream, and passing the trifluoroiodomethane product stream from the reactor through at least one column charged with carbonaceous materials to remove hydrogen iodide (HI), hydrogen triiodide (HI3) and iodine (I2) from the trifluoroiodomethane product stream.
    Type: Application
    Filed: August 23, 2022
    Publication date: December 22, 2022
    Inventors: Haiyou Wang, Daniel C. Merkel
  • Publication number: 20220396537
    Abstract: Heterogenous azeotrope or azeotrope-like compositions comprising 2-chloro-3,3,3-trifluoropropene (HFCO-1233xf) and water which may include from about 0.09 wt. % to about 92.69 wt. % 2-chloro-3,3,3-trifluoropropene (HFCO-1233xf) and from about 7.31 wt. % to about 99.91 wt. % water and having a boiling point between about 12.0° C. and about 13.6° C. at a pressure of between about 12.5 psia and about 16.5 psia. The azeotrope or azeotrope-like compositions may be used to separate impurities, including water, from 2-chloro-3,3,3-trifluoropropene (HFCO-1233xf).
    Type: Application
    Filed: November 5, 2020
    Publication date: December 15, 2022
    Inventors: Haluk Kopkalli, Daniel C. Merkel, Hang T. Pham
  • Patent number: 11472757
    Abstract: A method for conversion of a composition containing HCFO-1233zd(Z) and HCFC-244fa to form HCFO-1233zd(E) by reacting a mixture including HCFO-1233zd(Z) and HCFC-244fa in a vapor phase in the presence of a catalyst to simultaneously isomerize HCFO-1233zd(Z) to form HCFO-1233zd(E) and dehydrohalogenate HCFC-244fa to form HCFO-1233zd(E). The catalyst may be a chromium-based catalyst such as chromium trifluoride, chromium oxyfluoride, or chromium oxide, for example.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: October 18, 2022
    Assignee: Honeywell International Inc.
    Inventors: Christian Jungong, Daniel C. Merkel
  • Patent number: 11453631
    Abstract: A method of producing trifluoroiodomethane (CF3I) includes providing a feedstock comprising trifluoroacetyl iodide (TFAI), passing the feedstock through at least one column charged with carbonaceous materials to remove hydrogen iodide (HI), hydrogen triiodide (HI3) and iodine (I2) from the feedstock, and providing the feedstock to a reactor to produce a trifluoroiodomethane product stream. Another method of producing trifluoroiodomethane (CF3I) includes providing a feedstock comprising trifluoroacetyl iodide (TFAI) to a reactor to produce a trifluoroiodomethane product stream, and passing the trifluoroiodomethane product stream from the reactor through at least one column charged with carbonaceous materials to remove hydrogen iodide (HI), hydrogen triiodide (HI3) and iodine (I2) from the trifluoroiodomethane product stream.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: September 27, 2022
    Assignee: Honeywell International Inc.
    Inventors: Haiyou Wang, Daniel C. Merkel
  • Publication number: 20220258136
    Abstract: An alpha-alumina support for a hydrogenation catalyst useful in hydrogenating fluoroolefins is provided.
    Type: Application
    Filed: September 17, 2021
    Publication date: August 18, 2022
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: HAIYOU WANG, HSUEH S. TUNG, DANIEL C. MERKEL
  • Publication number: 20220219979
    Abstract: A method of removing water from a mixture of hydrogen iodide (HI) and water includes providing a mixture comprising hydrogen iodide and water and contacting the mixture with an adsorbent to selectively adsorb water from the mixture, contacting the mixture with a weak acid to absorb water from the mixture and/or separating the water from hydrogen iodide (HI) by azeotropic distillation to produce anhydrous hydrogen iodide (HI).
    Type: Application
    Filed: January 10, 2022
    Publication date: July 14, 2022
    Inventors: Yuon Chiu, Haiyou Wang, Haluk Kopkalli, Christian Jungong, Haridasan K. Nair, Rajiv Ratna Singh, Daniel C. Merkel, Tao Wang, Terris Yang, Richard Wilcox
  • Publication number: 20220219981
    Abstract: A method of removing water from a mixture of iodine (I2) and water includes providing a mixture comprising iodine and water and: contacting the mixture with an adsorbent to selectively adsorb water from the mixture, contacting the mixture with a concentrated acid to absorb water from the mixture, separating the water from mixture by distillation, contacting the mixture with a gas that is inert to iodine (I2), contacting the mixture with hydrogen iodide (HI), or combinations thereof.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 14, 2022
    Inventors: Yuon Chiu, Haiyou Wang, Haluk Kopkalli, Christian Jungong, Haridasan K. Nair, Rajiv Ratna Singh, Daniel C. Merkel, Tao Wang, Terris Yang, Richard Wilcox
  • Patent number: 11344761
    Abstract: The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and 1,1,1,2,2,3,3-heptafluoropropane (HFC-227ca), and a method of forming an azeotrope or azeotrope-like composition comprising the step of combining 1,1,1,2,2,3,3-heptafluoropropane (HFC-227ca) and trifluoroiodomethane (CF3I) to form an azeotrope or azeotrope-like comprising 1,1,1,2,2,3,3-heptafluoropropane (HFC-227ca) and trifluoroiodomethane (CF3I) having a boiling point of about ?24.46° C.±0.30° C. at a pressure of about 14.40 psia±0.30 psia.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: May 31, 2022
    Assignee: Honeywell International Inc.
    Inventors: Christian Jungong, Daniel C. Merkel, Haiyou Wang, Hang T. Pham, Ryan J. Hulse
  • Publication number: 20220153673
    Abstract: The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and trifluoroacetyl chloride (CF3COCl), methods of forming same, and methods of separating, or breaking, the azeotrope or azeotrope-like compositions of trifluoroiodomethane (CF3I) and trifluoroacetyl chloride (CF3COCl).
    Type: Application
    Filed: November 10, 2021
    Publication date: May 19, 2022
    Inventors: Haluk Kopkalli, Joshua Close, Pramod K W Harikumar Warrier, Daniel C. Merkel
  • Patent number: 11318338
    Abstract: The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and 1,1,1,3,3,3-hexafluoropropane (HFC-236fa), and a method of forming an azeotrope or azeotrope-like composition comprising the step of combining 1,1,1,3,3,3-hexafluoropropane (HFC-236fa) and trifluoroiodomethane (CF3I) to form an azeotrope or azeotrope-like comprising 1,1,1,3,3,3-hexafluoropropane (HFC-236fa) and trifluoroiodomethane (CF3I) having a boiling point of about ?22.70° C.±0.30° C. at a pressure of about 14.30 psia±0.30 psia.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: May 3, 2022
    Assignee: Honeywell International Inc.
    Inventors: Christian Jungong, Daniel C. Merkel, Haiyou Wang, Hang T. Pham, Ryan J. Hulse
  • Publication number: 20220112144
    Abstract: A method of producing trifluoroiodomethane (CF3I) includes providing a feedstock comprising trifluoroacetyl iodide (TFAI), passing the feedstock through at least one column charged with carbonaceous materials to remove hydrogen iodide (HI), hydrogen triiodide (HI3) and iodine (I2) from the feedstock, and providing the feedstock to a reactor to produce a trifluoroiodomethane product stream. Another method of producing trifluoroiodomethane (CF3I) includes providing a feedstock comprising trifluoroacetyl iodide (TFAI) to a reactor to produce a trifluoroiodomethane product stream, and passing the trifluoroiodomethane product stream from the reactor through at least one column charged with carbonaceous materials to remove hydrogen iodide (HI), hydrogen triiodide (HI3) and iodine (I2) from the trifluoroiodomethane product stream.
    Type: Application
    Filed: October 6, 2021
    Publication date: April 14, 2022
    Inventors: Haiyou Wang, Daniel C. Merkel
  • Publication number: 20220112226
    Abstract: The present disclosure provides a composition including trifluoroacetyl iodide, at least one organic impurity and at least one inorganic impurity. The at least one organic impurity includes at least one of: difluoroiodomethane, pentafluoroiodoethane, iodomethane, iodopropane, dichlorotetrafluoroethane, dichlorotrifluoroethane, trichlorotrifluoroethane, methyltrifluoroacetate, trifluoroacetic anhydride, difluorobutane and methyl propane. The at least one inorganic impurity includes at least one of: hydrogen iodide, hydrogen chloride, iodine and hydrogen triiodide.
    Type: Application
    Filed: October 6, 2021
    Publication date: April 14, 2022
    Inventors: Haiyou Wang, Haridasan K. Nair, Daniel C. Merkel, Selma Bektesevic, Terris Yang
  • Patent number: 11123710
    Abstract: The present invention relates, in part, to an alpha-alumina support for a hydrogenation catalyst useful in hydrogenating fluoroolefins. In certain aspects, it relates to a method for hydrogenating a compound by contacting an olefin reactant having at least one carbon-fluorine bond, with a supported hydrogenation catalyst. The reaction results in a product that includes a hydrogenated derivative of the olefin. In certain embodiments, the supported hydrogenation catalyst includes a zero-valent metal disposed on an alpha-alumina support.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: September 21, 2021
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou Wang, Hsueh S. Tung, Daniel C. Merkel