Patents by Inventor Daniel C. Wadsworth, Jr.

Daniel C. Wadsworth, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11197988
    Abstract: A device for reducing agent penetration at an insertion site is provided that has a porous inner sleeve fluidly connected to a conduit. A vacuum or hydrodynamic source is fluidly connected to the conduit. The device is stabilized by fibroblast in-growth and inhibits bacterial colonization. A device is also provided that has a conduit having a bore and an outer conduit surface. The outer conduit surface is optionally nanotextured to promote fibroblast adhesion and limit bacterial residency. A sleeve is provided in fluid communication with the bore of the conduit, and is formed from materials characterized by a pore matrix through which vacuum or hydrodynamic draw is achieved in a process to promote stabilization and reducing bacterial colonization by draw fluid from an area around the surrounding the site of the device. The sleeve optionally has a distal nanotextured surface.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: December 14, 2021
    Inventors: Allen B. Kantrowitz, Chris Mortis, Daniel C. Wadsworth, Jr.
  • Publication number: 20190167965
    Abstract: A device for reducing agent penetration at an insertion site is provided that has a porous inner sleeve fluidly connected to a conduit. A vacuum or hydrodynamic source is fluidly connected to the conduit. The device is stabilized by fibroblast in-growth and inhibits bacterial colonization. A device is also provided that has a conduit having a bore and an outer conduit surface. The outer conduit surface is optionally nanotextured to promote fibroblast adhesion and limit bacterial residency. A sleeve is provided in fluid communication with the bore of the conduit, and is formed from materials characterized by a pore matrix through which vacuum or hydrodynamic draw is achieved in a process to promote stabilization and reducing bacterial colonization by draw fluid from an area around the surrounding the site of the device. The sleeve optionally has a distal nanotextured surface.
    Type: Application
    Filed: February 6, 2019
    Publication date: June 6, 2019
    Inventors: Allen B. Kantrowitz, Chris Mortis, Daniel C. Wadsworth, JR.
  • Patent number: 10258784
    Abstract: A device for reducing agent penetration at an insertion site is provided that has a porous inner sleeve fluidly connected to a conduit. A vacuum or hydrodynamic source is fluidly connected to the conduit. The device is stabilized by fibroblast in-growth and inhibits bacterial colonization. A device is also provided that has a conduit having a bore and an outer conduit surface. The outer conduit surface is optionally nanotextured to promote fibroblast adhesion and limit bacterial residency. A sleeve is provided in fluid communication with the bore of the conduit, and is formed from materials characterized by a pore matrix through which vacuum or hydrodynamic draw is achieved in a process to promote stabilization and reducing bacterial colonization by draw fluid from an area around the surrounding the site of the device. The sleeve optionally has a distal nanotextured surface.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: April 16, 2019
    Assignee: Viaderm LLC
    Inventors: Allen B. Kantrowitz, Chris Mortin, Daniel C. Wadsworth, Jr.
  • Patent number: 10065030
    Abstract: A device for reducing agent penetration at an insertion site is provided that has a porous inner sleeve fluidly connected to a conduit. A vacuum or hydrodynamic source is fluidly connected to the conduit. The device is stabilized by fibroblast in-growth and inhibits bacterial colonization. A device is also provided that has a conduit having a bore and an outer conduit surface. The outer conduit surface is optionally nanotextured to promote fibroblast adhesion and limit bacterial residency. A sleeve is provided in fluid communication with the bore of the conduit, and is formed from materials characterized by a pore matrix through which vacuum or hydrodynamic draw is achieved in a process to promote stabilization and reducing bacterial colonization by draw fluid from an area around the surrounding the site of the device. The sleeve optionally has a distal nanotextured surface.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: September 4, 2018
    Assignee: VIADERM LLC
    Inventors: Allen B. Kantrowitz, Chris Mortis, Daniel C. Wadsworth, Jr.
  • Publication number: 20130006186
    Abstract: A device for reducing agent penetration at an insertion site is provided that has a porous inner sleeve fluidly connected to a conduit. A vacuum or hydrodynamic source is fluidly connected to the conduit. The device is stabilized by fibroblast in-growth and inhibits bacterial colonization. A device is also provided that has a conduit having a bore and an outer conduit surface. The outer conduit surface is optionally nanotextured to promote fibroblast adhesion and limit bacterial residency. A sleeve is provided in fluid communication with the bore of the conduit, and is formed from materials characterized by a pore matrix through which vacuum or hydrodynamic draw is achieved in a process to promote stabilization and reducing bacterial colonization by draw fluid from an area around the surrounding the site of the device. The sleeve optionally has a distal nanotextured surface.
    Type: Application
    Filed: March 9, 2012
    Publication date: January 3, 2013
    Applicant: L-VAD Technology, Inc.
    Inventors: Allen B. Kantrowitz, Chris Mortin, Daniel C. Wadsworth, JR.
  • Publication number: 20120310181
    Abstract: A device for reducing agent penetration at an insertion site is provided that has a porous inner sleeve fluidly connected to a conduit. A vacuum or hydrodynamic source is fluidly connected to the conduit. The device is stabilized by fibroblast in-growth and inhibits bacterial colonization. A device is also provided that has a conduit having a bore and an outer conduit surface. The outer conduit surface is optionally nanotextured to promote fibroblast adhesion and limit bacterial residency. A sleeve is provided in fluid communication with the bore of the conduit, and is formed from materials characterized by a pore matrix through which vacuum or hydrodynamic draw is achieved in a process to promote stabilization and reducing bacterial colonization by draw fluid from an area around the surrounding the site of the device. The sleeve optionally has a distal nanotextured surface.
    Type: Application
    Filed: February 23, 2011
    Publication date: December 6, 2012
    Applicant: L-VAD Technology, Inc.
    Inventors: Allen B. Kantrowitz, Chris Mortis, Daniel C. Wadsworth, JR.
  • Patent number: 5399168
    Abstract: A subcutaneous implantable access port is formed of a housing having a pair of noncircular fluid cavities enclosed therein by a floor, walls upstanding from the floor, and a self-sealing septum positioned above each fluid cavity. The housing is constructed of a base, a septum support, and a cap. An outlet stem exits the base and communicates with the fluid cavities therein. The outlet stem has two prongs formed in a side-by-side configuration extending outwardly from the base. The prongs are formed within the stem channels in fluid communication with the fluid cavities. Protruding radially outwardly from the portion of said prong is a barb. Fluid injected into the fluid cavity through the septum flows through a smooth transition region in which the cross-sectional area is smoothly reduced from the corresponding fluid cavity. A locking sleeve provides radial inward pressure upon the catheter which is slid over the outlet stem, thereby insuring that the catheter remains mounted on the outlet stem.
    Type: Grant
    Filed: July 29, 1992
    Date of Patent: March 21, 1995
    Assignee: C. R. Bard, Inc.
    Inventors: Daniel C. Wadsworth, Jr., Kelly J. Christian, Augustus Felix, Patricia A. Bassett, Craig S. Nevers